LISV UVSO

Study on Multi-Users Interference in Vehicle to Vehicle Visible Light Communications

Emmanuel Plascencia, Oyunchimeg Shagdar, Hongyu Guan and Luc Chassagne

PRESENTER'S PROFILE

Emmanuel Plascencia

He obtained his bachelor's degree in Electronic Engineering from the Technological Institute of León, Mexico in 2016, and a master's degree in Applied Sciences in medical physics and instrumentation from the University of Guanajuato, Mexico in 2018. He is a 2nd-year Ph.D. student at the University of Versailles in codirection with the Vedecom Institute in France. His thesis research includes Visible Light Communication for vehicle platoons, as well as the Physical layer (PHY) and Medium Access
 Control (MAC) for VLC technology.

INTRODUCTION

Visible Light Communications (VLC) can play an important role in the Cooperative Intelligent Transport Systems (C-ITS) by enabling vehicles to communicate with nearby vehicles (V2V) and infrastructure (V2I) by offering virtually unlimited and unregulated spectrum.

MODELING IMPACT OF VLC MULTI-USERS INTERFERENCE

Angular distribution (Tx)

$$
R_{o}(\phi)=\underbrace{\left\{\begin{array}{cc}
\frac{\left(m_{i}+1\right)}{2 \pi} \operatorname{Cos}^{m_{i}}(\phi) & \phi \in\left[\frac{-\pi}{2} \frac{\pi}{2}\right] \\
0 & \phi \geq \frac{\pi}{2}
\end{array} \quad A_{e f f}(\psi)=\left\{\begin{array}{lr}
A_{r} \operatorname{Cos}(\psi) & 0 \leq \psi \leq \frac{\pi}{2} \\
0 & \psi>\frac{\pi}{2}
\end{array}\right.\right.}
$$

$$
H(\phi, \psi)= \begin{cases}\frac{A_{r}\left(m_{i}+1\right)}{2 \pi d^{2}} \operatorname{Cos}^{m_{i}}(\phi) \operatorname{Cos}(\psi) & 0 \leq \psi \leq \psi_{c} \\ 0 & \text { elsewhere }\end{cases}
$$

The receiver power P_{r}, is hence

$$
P_{r}=H(\phi, \psi) P_{t}=\frac{H_{0}(\phi, \psi)}{d^{2}}
$$

$$
H_{0}(\phi, \psi)= \begin{cases}\frac{A_{r}\left(m_{i}+1\right) P_{t}}{2 \pi} \operatorname{Cos}^{m_{i}}(\phi) \operatorname{Cos}(\psi) & 0 \leq \psi \leq \psi_{c} \\ 0 & \text { elsewhere }\end{cases}
$$

MODELING IMPACT OF VLC MULTI-USERS INTERFERENCE

Packet Delivery Ratio (PDR) depends on the Bit-Error Rate (BER) and the packet size (L). BER is a function of Signal to Interference plus Noise Ratio (SI

$$
\operatorname{PDR}=(1-B E R)^{L} \quad B E R=Q(\sqrt{S I N R})=Q\left(\sqrt{\frac{P_{r}}{M U I+N}}\right)
$$

SINR requirement (SINR $R_{t h}$: minimum required SINR)

$$
\frac{P_{r}}{M U I+N} \geq \operatorname{SINR}_{t h}
$$

$$
P_{i}\left(d_{i r}\right) \geq \frac{P_{r}\left(d_{t r}\right)}{\left.S_{I N R}\right)}-N
$$

SUCCESS PROBABILITY WITH PRESENCE OF MUI

Relation between Tx and RX distance ($d_{t r}$) and the MUI zone on a multi-lane ($l_{0}, l_{1}, l_{2}, l_{n} \ldots$)

$$
d_{r i}=d_{t r} \sqrt{S I N R_{t h}}
$$

Road length in MUI-zone:

$$
l=d_{i r}+\sum_{k=1}^{n_{l}} l_{k}+\sum_{k=1}^{n_{r}} l_{k}
$$

The probability of finding i vehicles in the MUI zone

$$
P(i, l)=\frac{(\beta l)^{i} e^{-\beta l}}{i!}
$$

Communication success probability

$$
P_{s}=\sum_{i=0}^{\infty} P(i, l)(1-\tau)^{i}
$$

Where τ is the channel access probability: function of transmission time ($T_{t x}$) and message generation interval ($T_{\text {interval }}$)

$$
\tau=\frac{T_{t x}}{T_{\text {interval }}}
$$

PERFORMANCE EVALUATION: VLC SUCCESS PROBABILITY

MATLAB parameters + Simulink Model

Parameter	Value
PD reference	S6967 Hamamatsu
$A_{\text {eff }}$	$100 \mathrm{~mm} \times 100 \mathrm{~mm}$
PD efficiency	$0,5(\mathrm{~A} / \mathrm{W})$
FoV (ψ)	55°
PD capacitance	$1,2 \mu F / \mathrm{m}^{2}$
Transmission frequency	500 KHz
Transmission power	1 Watt (Car taillight)
Transmitter Semi-angle $\left(\phi_{\frac{1}{2}}\right)$	20°
Inter-PD separation distance	1,2 meters
Road lane width	2,5 meters
Data size (L)	1000 Bytes

PERFORMANCE EVALUATION: VLC COMMUNICATION RANGE \& MUI ZONE VALIDATION

Results

VLC communication range on a 7 -lanes road.

MUI zone for 90% of PDR requirement. Blue and yellow zones are simulation results, Red transparent area is the results of the analytical model.

UVSOE

université panIs-sAcLAr

PDR performances of VLC in 3-lanes highway scenario ($l=$ 203m).
a) Low Density - maximum 1 vehicles on the road
b) Medium Density - maximum 10 vehicles on the road
c) High Density - maximum 20 vehicles on the road.

PDR performances of VLC in 7-lanes highway scenario ($l=$ 529m).
a) Low Density - maximum 2 vehicles on the road
b) Medium Density - maximum 26 vehicles on the road
c) High Density - maximum 53 vehicles on the road.

- Development of an analytical model
- Determining multi-user interference zone
- VLC success probability for Poisson distributed road traffic.
- The Simulink simulation results confirm the correctness of the analytical model on MUI zone.
- Even with low traffic densities and low message generation rates, the vehicles in the MUI zone can significantly degrade the PDR performance of the target VLC communication
- An inherent necessity of a MAC protocol for V2V communications.

Future work:

- Improvement of the theoretical model by considering shadowing effect by bodies of vehicles.
- Conduct study on MAC that is aware of the presences of vehicles in the MUI zones.

VEDECOM

DU VÉHICULE DÉCARBONE ET
COMMUNICANTETDESAMOBILITÉ

Thank you for your attention

Together to accelerate the mobility of tomorrow !

