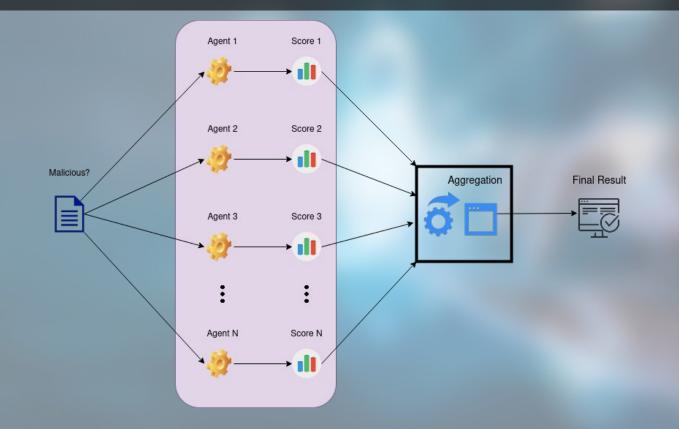
Comparison of a Supervised Trained Neural Network Classifier and a Supervised Trained Aggregation Function Classifier

Alexandre Croix, Thibault Debatty, Wim Mees

Cyber Defense Lab, Royal Military Academy, Belgium Email: a.croix@cylab.be


Presenter Information - Alexandre Croix

- Graduated as Industrial Engineer in 2018.
- Member of the Cyber Defense Research Unit at **Royal Military Academy, Brussels** GIAC Mobile Device Security Analyst (2019)

Context

- Cyber-defense systems are complex
- Multi-agents decision systems
- Several evaluation criterion
 - Agents
 - Scores
 - ⇒ Need to aggregate scores

Context

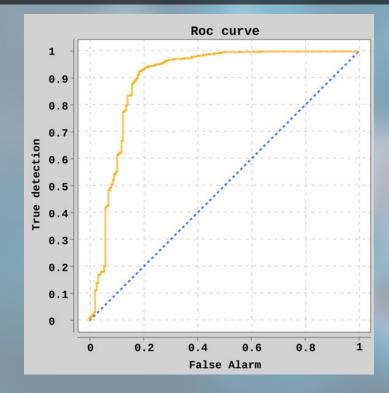
4

Context

- Compare efficiency two aggregation methods
 - Aggregation function trained by Genetic Algorithm
 - Artificial Neural Network trained by backpropagation
- Supervised training

Context: task

- Training classifiers to distinguish if a PHP file is a webshell or an harmless file
- 23,415 PHP files (from PHP project)
 - 1,833 webshells
 - Analyzed by a 5-agents webshell detector

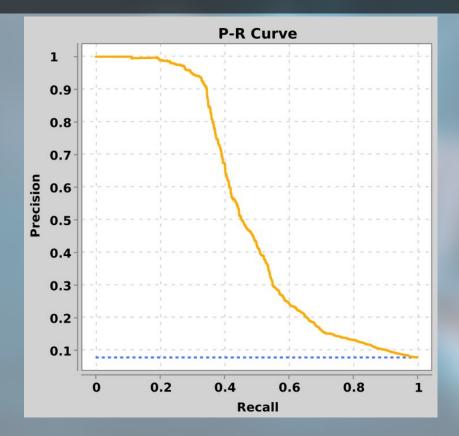


Evaluation criterion: ROC AUC

Receiver Operating Characteristics curve(ROC)

- Graphical tool
- TPR against FPR
- Area Under the Curve (AUC)

Evaluation criterion: ROC AUC



Evaluation criterion: P-R AUC

Precision-Recall curve (P-R)

- Graphical tool
- Precision against Recall
- More informative for imbalanced dataset
- Area Under the Curve (AUC)

Evaluation criterion: P-R AUC

Aggregation function: WOWA

- Weighted Ordered Weighted Averaging
 Introduced in 1997 by Vicenç Torra
- Combines WM and OWA advantages
- Requires two parameters for each data source
 - More complex

Aggregation function: WOWA

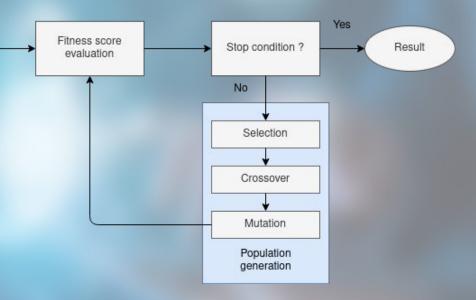
$WOWA = f(a_1, a_2, \ldots, a_n, w_1, w_2, \ldots, w_n, p_1, p_2, \ldots, p_n)$

where

 a_i are data sources

 w_i are WM weights

 $p_i\,\,$ are OWA weights


Genetic Algorithm

- Iterative process
- Population of potential solutions
 - Two weight vectors (w and p)

Initial population

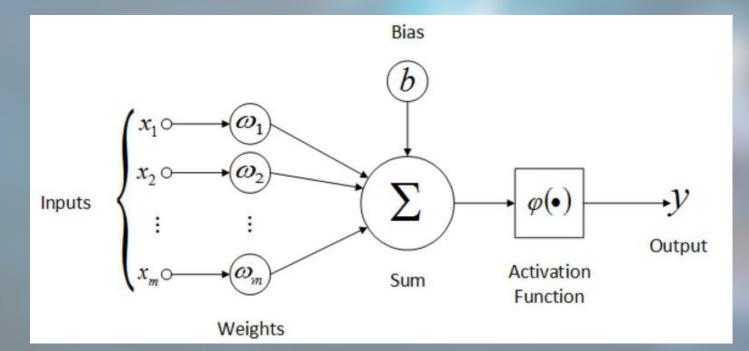
generation

Parameters to tune

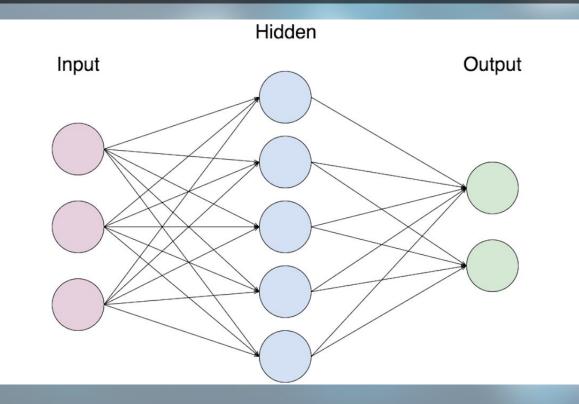
Genetic Algorithm: parameters

Parametric study

- Population number: 40 to 200
- Crossover rate: 5 to 95
- Mutation rate: 5 to 95
- Fitness score evaluation: "Distance" or "AUC"


Genetic Algorithm: fitness score

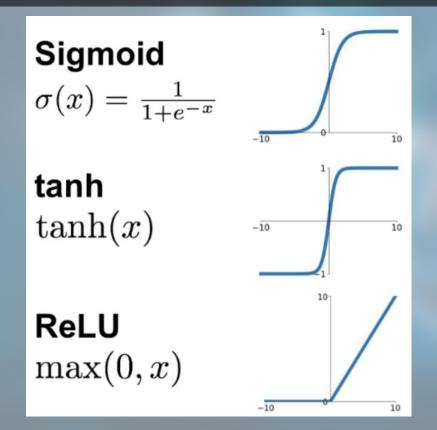
• Distance:


- WOWA for each population element
- Difference with the dataset result
- Add all differences
- · AUC:
 - WOWA for each population element
 - AUC of ROC curve

Neural Network

Interconnection of neurons

Neural Network: structure



Neural Network: parameters

Hyperparametric study

- Neurons number: 5 to 50
- Learning rate: 0.1 to 0.9, 0.01 to 0.09, 0.001 to 0.009
- Batch Size: 1000 to 2000
- Epochs Number: 100 to 350
- Activation Function: tanh, ReLu, Sigmoid

Neural Network: parameters

19

Evaluation

k-fold cross validation

- Dataset separates in k folds
- k 1 folds used for training
- Last fold for evaluation (P-R AUC and ROC AUC)
- Repeat k times, rotating test set
- Mean of intermediate results

Results: Genetic Algorithm

ROC criteria

- Population size: 75
- Crossover rate: 40
- Mutation rate: 20
- Fitness function: AUC

P-R criteria

- Population size: 130
- · Crossover rate: 30
- Mutation rate: 5Fitness function: AUC

Result ≈0.88

Result ≈ 0.73

Results: Neural Network

ROC criterion

- Neurons number: 38
- Learning rate: 0.04
- Batch size: 2000
- Epochs number: 350
- Activation function: ReLu

Results [0.92;0.95[

P-R criterion

- Neurons number: 38
- Learning rate: 0.05
- Batch size: 2000
- Epochs number: 350
- Activation function: ReLu

Results [0.78; 0.84[

Results: comparison

- 10 times a k-fold cross validation
- Variance minimization

Classifier	ROC	P-R
Genetic Algorithm	0.900598	0.745871
Neural Network	0.946812	0.812567

Conclusions and future works

Neural Network

- More efficient
- ReLu activation function always the best
- Slow
- Requires GPU (expensive)
- Genetic Algorithm
 - AUC fitness score always the best
 - Results can be interpreted

Conclusions and future works

- Bigger parametric study
- · Other type of data
 - Dataset dependent?
- Correlation between parameters