Andreas Put and Bart De Decker

imec-DistriNet, KU Leuven

andreas.put@kuleuven.be

bart.dedecker@kuleuven.be

IoTSEAR: a System for Enforcing Access control Rules with the IoT

About

Andreas Put is a postdoctoral researcher in the imec-DistriNet research group at KU Leuven. During his PhD, his research focused on privacy-enhancing technologies, anonymous authentication, and e-Voting. However, his research in recent years centers around enhancing security and privacy specifically in IoT environments.

- > Introduction
- Context Model
- > IoTSEAR
- > Conclusion

Introduction

Introduction

Context-aware access control

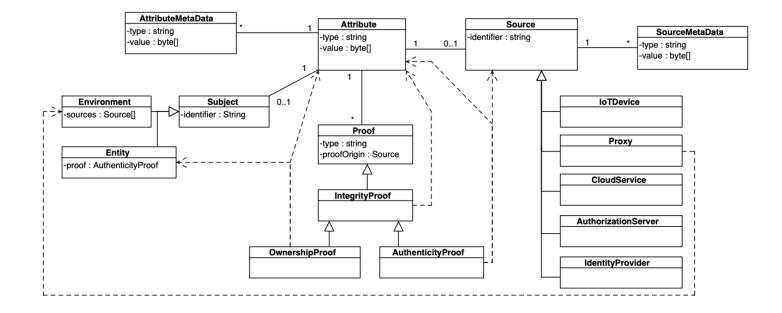
- Context types
 - >> System state
 - » IoT Device context
 - >> 3rd party/Cloud service

»»Incl. federated identity management

- Context security requirements!
 - » Integrity, authenticity, ownership

Introduction IoTSEAR scope

- > How to specify context security requirements?
 - → Generic model for context
- > How to specify context aware access permissions?
 - → policy language [1]
- > How to enforce access permissions & security requirements?

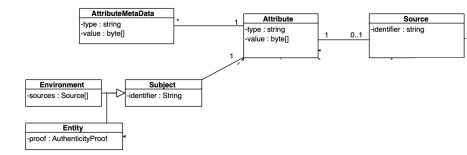

→ IoTSEAR middleware

[1] A. Put and B. De Decker, "Attribute-based privacy-friendly access control with context," in International Conference on E-Business and Telecommunications. Springer, 2016, pp. 291–315

Context Model

Context Model

Overview


Context Model

Attribute & Proof

- > Attribute:
 - » Raw data sensor output, identity/authorization token, …
 - » Metadata: timestamp, encoding, ...
 - » Source
 - » Subject
- > Proof:

Universally verifiable object

- IntegrityProof & AuthenticityProof
 Verify attribute Integrity & source authenticity
- >> OwnershipProof
 - Verify link between Subject & Attribute

Instances of the context model

Applied to a sensor reading

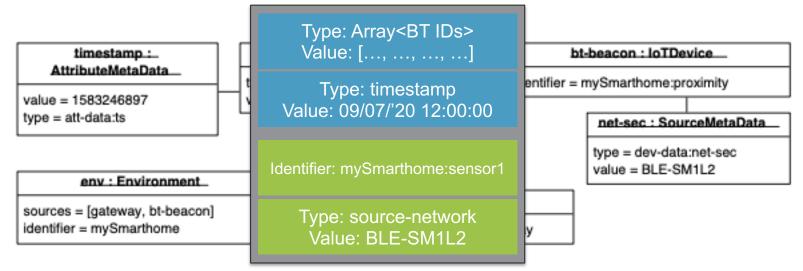
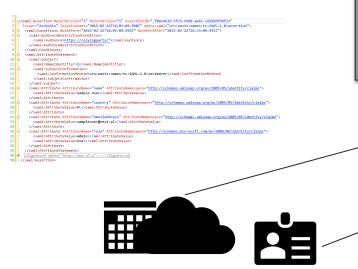
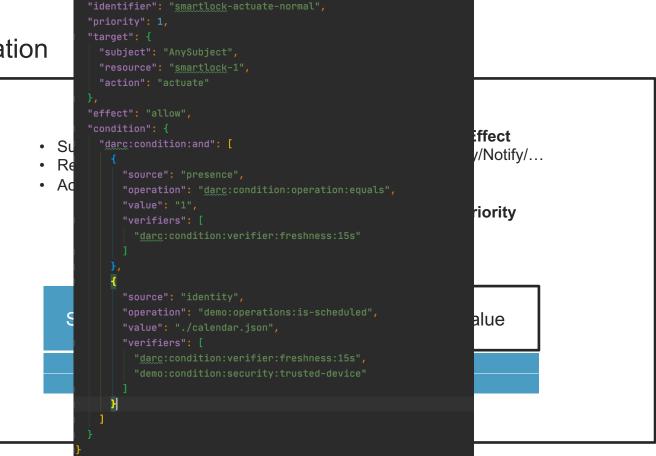


Figure 2. The context model applied to a proximity sensor reading



Iotsear


Context Model Context Enrichment

Type: samlAttribute:role Value: caretaker	Type: not-after Value: 09/07/'20 18:00:00
Type: timestamp Value: 09/07/'20 12:00:00	Type: authnContext Value: NFCBadge
Identifier: healthcare-IDP	proof: saml-signature Identifier: Alice
	Type: xmldsig#rsa-sha1 ProofOrigin: healthcare-IDP
IoTSEAR Context Processor	

15

IoTSEAR Policy representation

IoTSEAR

Context verifiers

- > Middleware component
 - » Selected through identifiers in policy
 - » Used to filter useable context objects

»Input: Context object

>>> Output: Boolean

- > E.g. Freshness, known-devices, basic/substantial/high, ...
 - » Often application dependent

IoTSEAR performance

Conclusion

Conclusion

- > Generic model for context
 - » Allows (third parties) to verify custom security requirements
- > IoTSEAR middleware
 - >> Policy enforcement & context management
 - » Application specific security requirements
 - » Acceptable performance overhead

Distrinet Thank you!

Thank you!

andreas.put@kuleuven.be bart.dedecker@kuleuven.be