

Comparison of Embedding Objectives for Next Generation Networks

1st Stelios Prekas Dept. of Informatics & Computer Engineering University of West Attika Egaleo, Greece Email: sprekas@uniwa.gr

2nd Panagiotis Karkazis Dept. of Informatics & Computer Engineering University of West Attika Egaleo, Greece Email: p.karkazis@uniwa.gr

InfoWare 2020

3rd Panagiotis Trakadas General Department National & Kapodistrian University of Athens Evia, Greece Email: ptrakadas@uoa.gr

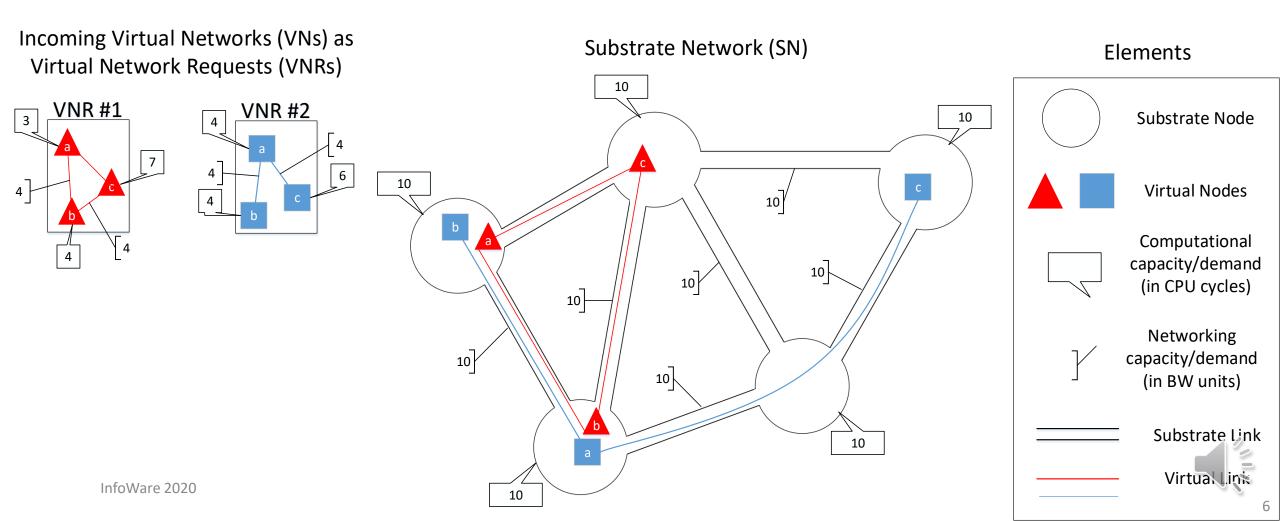
Introduction

- Network Virtualization (NV), catalyst technology for the new Internet
- From legacy architectures to the versatile Infrastructure as a Service (IaaS)
- The ISP business model broken into the SP and the InP roles
- NV & laaS lit the spark of the Next Generation Networks (NGNs)
- New virtualization concept emerges: Virtual Network Embedding

Paper goals

- Compare the most common proposed embedding solutions
- Evaluate their suitability for serving NGN applications

VNE problem formulation

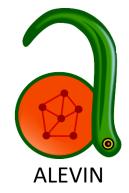

- Modeling: $SN = (N_s, L_s)$ & $VN^i = (N^i, L^i)$
- Setting capacities of element parameters
- Establishing networking constraints
- Node & link embedding functions:

$$f_i: N^i \to N_S$$
$$g_i: L^i \to SP \subseteq SN$$

VNE embedding process

VNE mapping strategies

- Performance Metrics
 - Quality of Service metrics
 - Cost-related metrics
 - Resilience metrics
- Variety of embedding objectives:



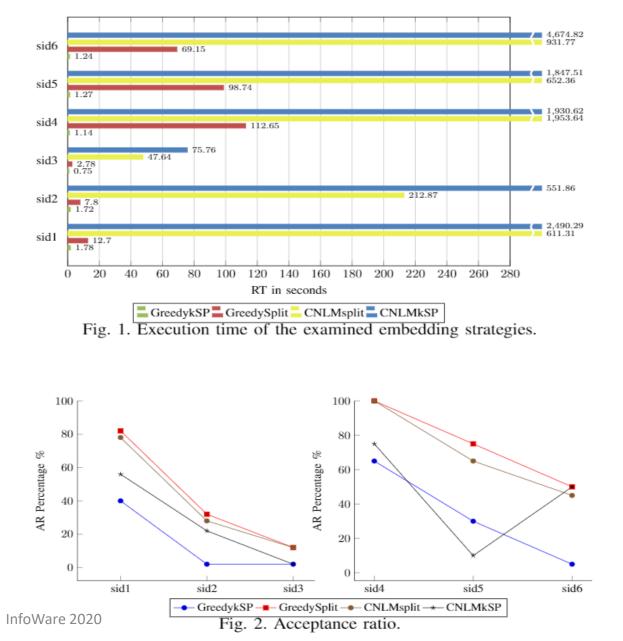
Simulation environment & parameters

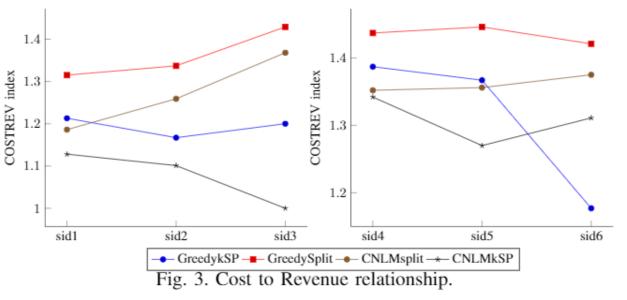
• Values of physical and virtual parameters

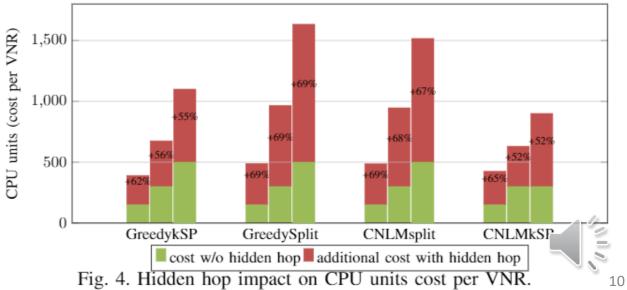
	Physical Network			Virtual Network			
Scenario ID	Number	CPU	BW	Number	nodes	CPU	BW
	of nodes	cycles	units	of VNRs	per VNR	cycles	units
sid1	50	100	100	50	3	15	15
sid2	50	100	100	50	3	30	30
sid3	50	100	100	50	3	30	50
sid4	50	100	100	20	10	15	15
sid5	50	100	100	20	10	30	30
sid6	50	100	100	20	10	50	50

• Compared embedding strategies

Notation	Embedding Solution Description
GreedykSP	Greedy Available and K Shortest Paths
GreedySplit	Greedy Available and Path Splitting
CNLMsplit	Coordinated Node and Link Mapping with Path Splitting
CNLMkSP	Coordinated Node and Link Mapping with k Shortest Paths




Simulation environment & parameters


- Performance Metrics
 - The average acceptance ratio (AR)
 - The cost-revenue relationship (COSTREV)
 - The running time (RT)

Evaluation results

Conclusions

Techniques	Best fitted for	Not qualified for	
Coordinated node and link mapping	applications with a long term life-cycle, expecting high quality results no matter the RT cost	stateless, express request serving applications	
Link mapping with path splitting	applications demanding redundancy and robustness	applications with green footprint	
K shortest path link mapping	stateless request serving grids like ad-hoc	fault-sensitive applications	

Future work

- Scale experimental environment for real life volume of results
- Develop a modular VNE algorithmic toolbox for customized end-to-end services

Comparison of Embedding Objectives for Next Generation Networks

1st Stelios Prekas Dept. of Informatics & Computer Engineering University of West Attika Egaleo, Greece Email: sprekas@uniwa.gr

2nd Panagiotis Karkazis Dept. of Informatics & Computer Engineering University of West Attika Egaleo, Greece Email: p.karkazis@uniwa.gr

InfoWare 2020

3rd Panagiotis Trakadas General Department National & Kapodistrian University of Athens Evia, Greece Email: ptrakadas@uoa.gr

