
Refinement Maps for Insulin Pump Control
Software Safety Verification

Eman M. Al-qtiemat, Sudarshan K. Srinivasan, Zeyad A. Al-Odat,
Sana Shuja

The Eleventh International Conference on Advances in System Testing and Validation
Lifecycle VALID 2019

November 22, 2019

Outlines

1 Introduction

2 Background

3 Related work

4 Refinement Maps and Refinement Map Templates

5 Conclusion and future work

Introduction

Critical devices still have safeness issues.
54 Class-1 recalls on infusion pumps due to software issues.
Testing is not enough!
Formal verification can address testing limitations.
Refinement-based verification is a formal verification technique
that has been demonstrated to be effective for verification of
software correctness at the object code level.

Introduction

We have proposed a novel approach to synthesize formal
specifications from natural language requirements.
Our verification approach is based on the theory of Well-Founded
Equivalence Bisimulation (WEB) refinement.
To overcome the difference between specifications and
implementations, WEB refinement uses the concept of a
refinement map.

Background-Transition Systems (TS)

Definition

A TS M = 〈S,R,L〉 is a three tuple in which S denotes the set of
states, R ⊆ SXS is the transition relation that provides the transition
between states, and L is a labeling function that describes what is
visible at each state.

S1

S3 S2

S4

Background-WEB Refinement

Definition

WEB Refinement: Let M = 〈S,R,L〉, M ′ = 〈S′,R′,L′〉, and r: S→ S’.
M is a WEB refinement of M ′ with respect to refinement map r, written
M ≈ r M ′, if there exists a relation, B, such that 〈 ∀ s ∈ S :: sB(r.s)〉 and
B is a WEB on the TS 〈 S] S’, R] R’, L 〉, where L.s = L’(s) for s and
S’ state and L.s = L’(r.s) otherwise.

Background-Synthesis of Formal Specifications

Natural

Language

Requirement/s

Parse Tree

Formal

specification

(TS)

APs List

Enju Parser

APERs

Formal Model

Synthesis Procedure

Related Work

Rabiah et al. (2016) developed a reliable autonomous robot
system by addressing A* path planning algorithm reliability issue.
A refinement process was used to capture more concrete
specifications by transforming High-Level specification into
equivalent executable program.
Cimatti (2015) et al. proposed a contract-refinement scheme for
embedded systems. The contract-refinement provides interactive
composition reasoning, step-wise refinement, and principled
reuse refinements for components for the already designed or
independently designed components.
Klein et al. (2014) introduced a new technique called State
Transition Diagrams (STD). It is a graphical specification
technique that provides refinement rules, each rule defines an
implementation relation on STD specification.

Related Work

Miyazawa (2011) et al. proposed a refinement strategy that
supports the sequential C implementations of the state flow
charts. The proposed design benefited from the architectural
features of model to allow a higher level of automation by
retrieving the data relation in a calculation style and rendering the
data into an automated system.
Spichkova (2008) proposed a refinement-based verification
scheme for interactive real time systems. The proposed work
solves the mistakes that rise from the specification problems by
integrating the formal specifications with the verification system.
The proposed scheme translates the specifications to a
higher-order logic, and then uses the theorem prover (Isabelle) to
prove the specifications.

Refinement Maps and Refinement Map Templates

Our strategy for constructing the refinement maps is as follows.
A specification state can be constructed from an implementation
state by determining the APs that are true in the implementation
state. If a specification has n APs, then we construct one
predicate function for each AP.
The predicate functions take the implementation state as input
and output a predicate value that indicates if the AP is true in that
state or not.
The collection of such predicate functions is the refinement map.

Refinement Maps

P

BO BA

R

BO = [NB ∧ (NBc < NBm)] ∨ [EB ∧
(EBc < EBm)]

P = P ∧ (Pc < Pm)

R = R ∧ (Rc < Rm)

BA = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2
∧ (BP2c < BP2m)] ∨ . . .∨ [BPn ∧
(BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)]

BO: Bolus delivery

P: Prime process

R: Refill process

BA: Basal delivery

Refinement Maps

AI

RTVR

UR

CDTC

AI = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧
(BP2c < BP2m)] ∨ . . .∨ [BPn ∧ (BPnc
< BPnm)] ∨ [TB ∧ (TBc < TBm)] ∨
[NB ∧ (NBc < NBm)] ∨ [EB ∧ (EBc <
EBm)]

CDTC = (DT 6= HDT) ∧ (CDTCc <
CDTCm)

UR = FLAG

RTVR = (CRV 6= HRV) ∧ (RTVRc <
RTVRm)

AI: Active Infusion

CDTC: Changing Drug Type and Concentration

UR: User Reminder

RTVR: Reservoir Time and Volume Recomputing

Refinement Map Templates

Process template.

Example
BA = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨ [BPn ∧
(BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)]

projection template.

Examples
UR = FLAG

Value change template.

Example
CDTC = (DT 6= HDT) ∧ (CDTCc < CDTCm)

Conclusion and future work

The End

	Introduction
	Background
	

	Related work
	Refinement Maps and Refinement Map Templates
	Conclusion and future work

