
© 2019 Nokia1 <Public>

Software Robustness Tutorial
Testing of Complex Telecommunications Solutions

Vincent Sinclair/Abhaya Asthana

24-03-2019

© 2019 Nokia2

Topics

<Public>

1. Reliability in Telecommunications Networks

– Overview of Nokia

– Current & Future Telecommunications Networks

– Reliability Requirements in Telecommunications Networks

2. Software Robustness

– Definition

– Examples of Software Robustness Defects

– Origin of Software Robustness Defects

3. Software Robustness Testing

– Role of Software Robustness Tester

– Software Robustness Testing as a Distributed Activity

4. Building a Software Robustness Test Plan, including Fault Modelling

– Inputs to the software robustness test plan

– Software Robustness Test Case Examples

– Extending Typical Stability Run

– Procedural Reliability

– Challenges for testers

5. Conclusions

© 2019 Nokia3

1. Reliability in Telecommunications Networks

<Public>

© 2019 Nokia4

Nokia: Long History of Successful Change

1865

2014

2015

Mobile
devices

Siemens Com

Motorola Solutions

Alcatel-Lucent

Withings
Nakina Systems
Gainspeed

Public

2019

© 2019 Nokia5

Telephony
begins

Analog
revolution

Digital
revolution

Mobile
revolution

The new
connectivity

Long distance voice
communication

Voice, data, and video
communication

Wireless
communication

Intelligent and seamless
connectivity through the Cloud

Nokia

At the forefront of every fundamental change in how we communicate and connect

Bell Telephone Laboratories
formed in 1925

• Copper networks
• Circuit switches
• Amplifiers

• Laser
• Satellite communications
• UNIX
• DWDM
• 100Gbps optical transport
• 400G routers

• First ever calls
on GSM and LTE

• First car phone
• Commercialization of

Small Cells
• MIMO

• 5G
• G.Fast: 1Gbps over copper
• Optical super channels
• Terabit IP routing
• Datacenter infrastructure and

applications for the Cloud
• Smart sensors for the

Internet of Things

Public

© 2019 Nokia6 Public

The past
Breathtaking rate of innovation in communication devices and networks

Devices

Networks

© 2019 Nokia7

BELL LABS IRELAND: RESEARCH STRATEGY

Redefining user
experience

Future-proof flexible
networks

Massively capable
infrastructure

“Drop-and-forget”

small cells

Cognitive cloud:

Zero-touch control

Infallible

context awareness

in real-time

Massive MIMO:

Squeezing the last

from spectrum

Energy-autonomous

infrastructure

Zero-footprint

thermal

management

© 2019 Nokia8

Current Telecommunications Networks

<Public>

4G

© 2019 Nokia9 <Public>

The future of communications
Rich, interactive, unified contextual communications

© 2019 Nokia10

Future Network: Latency Matters …

vRAN < 4ms

<Public>

© 2019 Nokia11

The Future is Different than the Past…”or we’re not in Kansas anymore”

Past Future

Solutions Technology-driven Human/Business need driven

Driver
Consumer

(BW)
Industry

(Latency & SLA)

Architecture Heavily Centralized Massively Distributed

Partnership Limited APIs Co-design & Open specs

Standards Lead Follow

Investment
Singular

(Operator only)
Multiple & Cooperative

(Many contributors/new players)

Flexibility
Limited

(Provisioned)
Large

(Software definable)

Sharing
Static and Limited

(HW VPNs)
Dynamic and Infinite

(SW Slices)

Innovation Speed
Per annum/decade

(new services)
Per hour/day

(new apps)

<Public>

© 2019 Nokia12

2. Software Robustness

<Public>

© 2019 Nokia13

Robustness in Telecommunication Networks – Network Focus

<Public>

• Measure is cell availability, excluding the blocked by user state (BLU).

• It gives the percentage of available time compared to the total time
that cell should be available.

• The counter is incremented by 1 approximately every 10 seconds when
"Cell Operational State is enabled".

• The counter is incremented with value 1 approximately every 10
seconds when cell "Administrative State is locked" or "Energy State is
energySaving" or "Local State is blocked".

© 2019 Nokia14

Robustness in Telecommunication Networks – User Focus

<Public>

Telco Operator view of reliability is changing, driven by increasing end user expectations:

Move from landline to mobile communications

Dependency on mobile communications

Today, many Telco companies have performance focused on KPIs such as:

Call set-up success rate, Call drop rate, Session set-up rate, Session retain rate.

Past Future

Reliability Network Element Focus End User Services Focus

Quality Number NE Defects/Outages Number Users Affected

Measures Five 9’s % successful services delivered

Challenge – Deliver software to meet future reliability expectations amidst increasing complexity

© 2019 Nokia15

• 2019: Change of time in spring to daylight time caused a software crash for parking payment system. 300 car
parks could not charge for two days and had to provide free parking.

• 2015: Plane Crash caused by computer configuration files being accidentally wiped from three engines.
The files needed to interpret the engine readings were deleted by mistake. This caused the affected propellers
to spin too slowly

• 2014: Many RBS, NatWest and Ulster Bank customers locked out of their bank accounts. To prevent a repeat,
an additional £450m was devoted specifically to "increasing the system's resilience”

• 2013: Airline traffic control system fails. The breakdown occurred when the National Air Traffic Service (NATS)
computer system was making the switchover from the quieter night time mode to the busier daytime setup. It
was unable to handle the normal volume of flights for a Saturday.

• 2013: Toyota firmware defect caused cars to accelerate unintentionally.

Software Robustness Outages – Non Telecom

<Public>

© 2019 Nokia16

90 major incidents reported in EU (2013)

• 19 countries reported 90 significant incidents and 9 countries reported no significant incidents.

• Mobile networks most affected: Approximately half of the major incidents had an impact on mobile Internet
and mobile telephony.

• Mobile network outages affect many users:

• 1.4 million users affected for each outage (data)

• 700 000 users affected for each outage (voice)

• Impact on emergency calls:
A fifth of the major incidents had an impact on the emergency calls (112 access –911 access in USA/Canada)

• Looking more in detail, the detailed causes affecting most user connections were

• software misconfiguration

• software bugs

• power surges

Software Robustness Outages – Telecom

Source: European Union Agency for Network and Information Security Annual Incident Reports 2013

<Public>

© 2019 Nokia17

Users Affected per Individual Outage (000’S)

Source: European Union Agency for Network and Information Security Annual Incident Reports 2013

<Public>

© 2019 Nokia18

Root Causes

<Public>

Source: European Union Agency for Network and Information Security Annual Incident Reports 2013

Where do these software defects originate ?

© 2019 Nokia19

Defect Life Cycle

• 3rd Party SW Defects
• Platform Defects
• Legacy Code Defects

C
u

sto
m

e
r

Requirements:

• Missing
• Errors
• Network Info Missing
• 3rd Party Software
• Platform

Internally
Found Defect

Escaped
DefectArchitecture:

• Hot Spots
• Single Points of

Failure

What happens when an outage occurs ?

D&D:

• Reqs misunderstood

• Design missing/Gaps

• Design Errors

• Feature Interactions

• Coding Logic Errors

• Coding Standard Errors

• Escalation
• Urgent Fix
• RCA
• Meetings.…

Requirements Architecture
Design &

Development

Defect Feedback

System Test

<Public>

© 2019 Nokia20

Real World View of Failures and Recovery

Challenge for tester: Build a test plan to test the most critical failures

Recovery
Scheme A

Manual Recovery

Failure
Detector

2. Lots of failure detectors, including
every subroutine/ object that
checks a return code

3. Alarm correlation and other logic determines

likely primary failure mode and activates
appropriate recovery scheme

4. A (relatively) small number

of primary recovery
schemes are supported

5. An escalation strategy assures

that if activated recovery
strategy doesn’t succeed, then
a more aggressive recovery is
activated

6. If automatic recovery

doesn’t successfully
complete, then
maintenance engineers
initiate manual recovery

Failure Isolation.

Activation of Appropriate
Recovery Scheme Normal

Operation

1. Large number
of potential
failures

<Public>

© 2019 Nokia21

3. Software Robustness Testing

<Public>

© 2019 Nokia22

Why Software Robustness Testing?

• Customer perception:

- End users are more and more dependent on having reliable telecommunications services

- Telco companies are demanding higher and higher levels of reliability

• Traditional functional testing strives to minimize the number of residual defects in product

• Inevitably, latent defects ‘leak’ into the field, causing in-service failures

• Strategy: Confront running system with realistic fault events to verify that system automatically detects
and recovers rapidly with minimal overall impact on service

• Failure acceleration:

- Intentionally inserting fault to trigger the fault recovery can achieve more thorough testing in a
controlled environment and within a reasonable time frame

- Identify software robustness defects

- Can identify design flaws and provide feedback to the design teams to improve fault detection,
isolation and recovery

<Public>

23 © Nokia 2019

Role of Software Robustness Tester

This is a different way of thinking

What are the critical failures that can realistically occur ?

How can I stress/break the software to trigger those failures ?

How can I test the detection, isolation and recovery from software failure ?

<Public>

(Fault Tolerant Mindset

http://www.google.ie/imgres?imgurl=http://1.bp.blogspot.com/-TGwUd3W-1yw/UejKfQy9b2I/AAAAAAAABfQ/N7LA37XdHf4/s640/0511-1009-1319-0462_Black_and_White_Cartoon_of_a_Stressed_Out_Guy_with_the_Word_Overload_clipart_image_1.jpg&imgrefurl=http://ajlaaazam.blogspot.com/2013_07_01_archive.html&h=269&w=350&tbnid=rDUzxTZ2gIkoDM:&zoom=1&docid=FeQ7hI9HWLP4lM&ei=zinjVPPWNMGE7gasm4CQCw&tbm=isch&ved=0CDMQMygrMCs4ZA

© 2019 Nokia24

Typical Software System Structure

▪ Layers may be developed in separate organizations.
(Platform, Middleware, Application)

▪ Some components may come from external software
suppliers

▪ A failure in one layer may need to be detected and
recovered from a different layer.

▪ We need to test that there is a solid connection between
the failure detection and the failure recovery mechanism.

▪ For example, a failure in application layer may need a
recovery action in the software platform layer.

Testing Within a Layer

T
e

st
in

g
 B

e
tw

e
e

n
 a

n
d

A

cr
o

ss
 L

ay
e

rs

Hardware + OS

Software
Applications

Software Platform

Each Higher Layer is responsible for testing:

• within layers

• between layers

• across the lower layers

So, where do we start ?

<Public>

© 2019 Nokia25

Telecomm Software Stack

<Public>

© 2019 Nokia26

R
o

b
u

st
n

e
ss

 T
e

st
in

g

Software Robustness Testing - Distributed Across Many Test Areas

Feature/Functional Testing

Stress Testing
(Robustness)

Stability Testing

System Testing

Fault Insertion Testing

Negative, Adversarial,
Breakage, Chaos, Free

Invalid inputs

Duplication

Stressful
environment

Network
congestion

Timing issues
........

Component/Feature
Interface Testing

Installation Testing
Data Migration Testing

Software robustness is tested as part of each individual test area

Robustness testing by phase …

NLT/Cluster Testing

User Doc Testing

Testing features/functions with invalid inputs. Test under stress.

Testing component interfaces for robustness to invalid inputs,
message errors, timing errors, missing/duplicate inputs.

Testing of the installation and configuration process. What could go
wrong? What could interrupt data migration?

System functionality testing with invalid inputs or system under
stress. What human errors can be made during OA&M procedures?

Stressing under high traffic load to trigger control mechanisms to
Detect, Isolate, Recover. Testing with invalid inputs.

Communication and application inter-working (message errors,
heartbeat failure, network congestion). Testing with multiple sites.

Mixed and varying traffic load, soak, growth and de-growth,
upgrades, routine maintenance actions

Testing of user procedures to identify robustness gaps

<Public>

© 2019 Nokia27

Who Performs Robustness Testing?

Unit
Test

(Dev)

Component
Test

Feature
Test

System
Test

NLT/E2E
/SLT

• Invalid inputs to functions

• Boundary tests

• Missing data/files

• Input overload/storms

• Boundary tests

• CPU/memory overload

• Feature interactions

• Software Upgrades

• User interface/Usability testing (User docs)

• Interactions for large systems with multiple sites

• Failover/recovery

• I/O failures (Heartbeats/Timers)

• Invalid inputs/messages

• Boundary tests

• End to end scenario errors

<Public>

Let’s look at how to build a complete software robustness test plan

© 2019 Nokia28

4. How to Build a Software Robustness Test Plan,
including Fault Modelling

<Public>

© 2019 Nokia29

Building a Complete Software Robustness Test Plan

Software

Robustness

Requirements

Hot Spots

Weak Points

Critical Interfaces

Where to focus our
software robustness

testing?Software Robustness Test Planning

Software Robustness Test Plan

Teat Plan 1
Feature Test

Test Plan 2
Interface
Testing

Test Plan 3
Stress Testing

Test Plan 4
Cluster Testing

The Test Plan is a complete view of the
software robustness testing.

It informs each test area what software
robustness testing they must cover.

The details of the actual testing are split
out amongst the individual test plans for
each test area.

This requires one person to co-ordinate software robustness testing across the different teams

Focus Areas for
Robustness

Testing
New Features

Complex Areas

New Interfaces

<Public>

© 2019 Nokia30

What Should Be Available Before Test Planning?

FUNCTION SOFTWARE ROBUSTNESS ACTIVITIES OUTPUTS AND RELATIONSHIP TO TESTING

SYSTEMS
ENGINEERING

Analysis of system interactions to identify what could go wrong.

Analysis of customer issues to identify robustness issues.

Develop requirements to prevent these failures.

List of system level software robustness requirements to address
during development (high level).

Customer scenarios, failure modes, error cases, corner cases, stress
scenarios

Informs testers what needs to be tested.

ARCHITECTS

Architect the software to meet the system level requirements.

Analysis of the product architecture to identify potential robustness
faults within the architecture, especially interface issues and resource
management.

Develop requirements to prevent these faults.

List of high risk components/features to focus testing
(high impact on failure, complex components, problematic
components).

Interface documents/descriptions.

List of hot spots and weak points.

DESIGNERS/
CODERS

Defensive programming and error checking:

* design of rainy-day cases, query failures, network errors

* design how to handle arguments out of range, null pointers, memory
allocation errors, etc.

Description of robustness elements of design

(typically at feature level)

Testers ask for: 1. List of system level software robustness requirements

2. List of customer scenarios to support, especially failure modes, error cases, corner cases

3. List of high risk components/features

4. Interface documents/descriptions

5. List of your product’s hot spots and weak points

6. Description of data structures, especially shared data

<Public>

© 2019 Nokia31

INPUT 1. Examples of Escaped Defects

Data gives insight to what failures occur in the field

Lost connections, hardware fails, switchover, overflow, IP instability, packet loss..

Example Description

1 We have lost connection from our xxx with all other nodes of the network.

2 Hardware failure. A disk controller lockup on Blade YY.

3 Provisioning issue due to defect trigger by mated pair switchover

4 XX overflow due to resource usage

5 4 XX in overload control following IP instability. A lot of latency in the connection between front end and back end

6
QoS problems (packet loss) resulting in repeatedly performing switchovers between the xxx sites. Each switchover
caused work-orders in process to fail and require resubmission, and caused a backlog of work orders to be generated

<Public>

http://cares.web.alcatel-lucent.com/cgi-bin/fast/view.cgi?AR=1-5098830&TZ=-480&view=ar

© 2019 Nokia32

INPUT 2. Examples of Escaped Defects

Data gives insight into what failures occur in the field

Lost connections, hardware fails, switchover, overflow, IP instability, packet loss..

Example Description

1 switchover triggered xxx engine initialization to fail, resulting in yyy content stuck in queue.

2 Xxx and yyy initialization at the same time leaves xxx in bad state.

3 Xxx blades do not recover automatically after bond0 fails.

4 Xxx relocated sessions in pool. Original xxx retained sessions as sessions did not get cleaned up from original xxx.

5 We need a new upgrade procedure (for HA) which xxxxxxxx

6 Size of server.log on xxx increases dangerously when Repair Request outside Repair Window. Risk : disk full

7 userplane : Alarm "Bearer Input Missing; {Invalid input}

8 not enough space available under xxxxxx. Not enough hard disk space available.

<Public>

© 2019 Nokia33

Outages

• Questions to ask by analysing the outage data?

- Which software components/sub-systems are most prone to fault?

- Which software failure mechanisms are most common?

- Timing/Latency Issues, Heartbeat failures, Invalid Input Data, Invalid Messages, Network Instability…

The answers to these questions gives insight to:

• Which sub-systems/components/features to focus on for robustness testing

• What type of testing to perform

Testers must ask :

• What has already gone wrong? What other similar things could go wrong?

• How can I trigger such errors and test for detection, isolation, recovery?

• Each critical and realistic error needs a robustness test case

<Public>

© 2019 Nokia34

2. System Requirements

Types of question to ask to your systems engineers and architects

- What are the inputs/outputs of the system ?

- What are the known end to end to end robustness requirements, failure
modes, error cases, corner cases

- Are all the inputs specified, including their source, accuracy, range
of values and frequency?

- Are all the outputs from the system specified, including their destination, accuracy, range of values,
frequency, and format?

- Are all the external communication interfaces specified, including handshaking, error-checking, and
communication protocols? (SGmb, SNMP, Diameter, M1, M3…)

- Is the data used in each task and the data resulting from each task specified?

- What external stressful conditions could arise that would stress the software

- Hardware failures, Network failures, Timing issues, Data flood/overload

The answers to these questions gives insight to the system level interactions

<Public>

© 2019 Nokia35

3. Software Architecture

<Public>

© 2019 Nokia36

Questions For Systems Engineers & Architects?

• What are the hot spot components/features with high activity?

• What are the weak spots with critical points of failure/single points of failure?

-What are the critical interfaces internal to your product?

• Testers need good insight into the internal working of the software to build software
robustness test cases

• Looking at the hot spots and weak points, how do we identify what could go wrong

-Fault modelling and architecture exploring

Let’s look at fault modeling

<Public>

© 2019 Nokia37

Fault Taxonomies

Fault Categories

Fault Types

Test Cases

Fault Areas

101

19

1000+

4

E.g. Software

• Corrupt message
• Heartbeat failure

Inter-process communication

• Input a corrupt message
• Kill the heartbeat

<Public>

© 2019 Nokia38

Fault Models (identifying potential failures)

Hardware

Software

High-Availability

Procedural

Fault Categories

Fault Areas

▪ Management and Provisioning
Errors and Failures

▪ Software Upgrade/Install
Failures - Rollback/Backouts

▪ Disk System Failure
▪ Board Level Hardware fault

insertion and recovery
▪ Insertion and Removal of FRU
▪ Cluster/Processor/Blade

▪ Failover testing
▪ Geographic redundancy
▪ High availability mechanisms
▪ Detecting Failures on Standby

Elements

▪ Memory Exhaustion/Failure
▪ Process/Thread failure
▪ File system exhaustion failure
▪ Database/Data structures
▪ Application Software Failures
▪ Local and Remote inter-process

communication
▪ Network Communication Failure
▪ Timer Failure
▪ Overload condition
▪ Cross NE Transactional failures

<Public>

© 2019 Nokia39

Developing Your Own Fault Categories
Exploring Architecture Diagrams to identify fault categories

If you can develop a Fault Model :
• You can test the model as you develop it
• You can draw implications from the model

1. Work from a high level design (map) of the system

2. Pay primary attention to interfaces between components or groups of components. We’re looking for cracks that
things might have slipped through

3. What can we do to mess/break things up as we trace the flow of data or the progress of a task through the system?

4. Build the map in an architectural walkthrough

5. Invite several programmers and testers to a meeting. Present the programmers with use cases and have them draw a
diagram showing the main components and the communication among them.

6. Ask “What if” questions to understand failure events and recovery responses. Initially, the diagram will change
significantly with each example. After a few hours, it will stabilize.

7. Take a picture of the diagram, blow it up. Use markers to sketch your current focus. Share across different sites.

8. Plan tests from this diagram jointly with other testers who understand different parts of the system

Examples of models for failure mode testing:
• architecture diagram
• state-based diagram
• dataflow

Testers cannot do this without insight from systems engineers, architects and designers

<Public>

© 2019 Nokia40

Developing Your Own Fault Categories/Fault Type
Imagine how the product can fail

Platforms:
Everything on which the product

depends

• A software product is much more
than code

• It involves a purpose, platform
and user.

• It consists of hardware, software
and user documentation

Product
Element
Failures

Functions:
Everything the product does – Data

Transactions, Communication,
Memory Management, Error Handling

Structures:
Everything that comprises the

logical or physical product –
Networks, Databases, Servers

Data:
Everything the product

processes

Operations:
How the product will be used

– Upgrade, Client Queries

<Public>

© 2019 Nokia41

4: High Risk Areas

• The last input to the software robustness test plan is the areas that are high risk.

• High risk areas are typically:
- new features

- new components

- new interfaces

- components/features with high impact upon failure

- very complex features or components

- problematic features or components (high defects during design/development)

- network configurations working at the extremes of their capability

We have seen how to identify what components/features/interfaces to focus on

We have seen how to identify fault categories and fault types to focus on

Together, these help us understand what to test and how to test

How do we build test cases for these fault categories/fault types ?

<Public>

© 2019 Nokia42

EXAMPLES OF FAULT INJECTION (1)

Exploring the
input domain

1 Input values that are out of bounds/range. Are they rejected?

2 Apply inputs that force error messages to occur. Are error messages displayed

3 Apply wrong inputs, that force the software to establish default values

4 Explore range of allowable character sets and data types. Are disallowed characters rejected

5 Overflow input buffers, too many characters for example. What happens to the data?

6 Input parameter values that will cause a failure. Are they rejected?

7 Repeat the same input or series of inputs numerous times.

Exploring stored
data

8 Apply inputs using a variety of initial conditions

9 Force a data structure to store too many or too few values

10 Test with needed data/files missing

Exploring feature
interaction

11 Pass invalid parameter values or invalid parameter types between features

12 Send an invalid IP address to a feature or component.

13 Verify features that share data. What happens when the data is corrupted?

S
o
m

e
 e

x
a
m

p
le

s

© 2019 Nokia43

EXAMPLES OF FAULT INJECTION (2)

System interface attacks

1 Try disabling a critical interface

2 Lock an element then try communicating with it

3 Reset an element and try communicating with it while it is resetting

4 Introduce delays or latency on the interface.

5 Introduce packet loss on the interface

6 Insert malformed message on communication link

7 Generate out of order messages

Generate interrupts,
unsolicited message,
series of interrupts

8 Interrupt from a device related to the task (e.g. network port)

9 Interrupt from a device unrelated to the task (e.g. timer)

10
Interrupt from a software event (e.g. set another program's (or this program's) timer to go

off during the task under test)

Change something that
this task depends on

11 Swap out a disk; data file

12 Change the contents of a file that this program is reading

13 Change the port that the program will write to (without signaling the change)

14 Change the packet/link rate

S
o
m

e
 e

x
a
m

p
le

s

© 2019 Nokia44

Cancel/abort/kill

1 Cancel the task (at different points during its completion)

2 Cancel some other task while this task is running

3 Cancel a task in communication with this task (the core task being examined)

4 Cancel a task that will eventually have to complete as a prerequisite to completion of this task

5 Cancel a task totally unrelated to this task

Pause, Hang

6 Create a temporary interruption in the task

7 Pause the task/thread for a short time

8 Pause the task/thread for a long time (long enough for a timeout, if one will arise)

System and
Security

9 Try logging in several times with the same user name and password

10 Try changing the time zone. Are all of the time stamps correct?

11 Try locking the user out of the network element (which would require a reboot)

12 Try inputting password with wrong case (upper case/lower case). Does it still work?

Lock

13 Lock a resource that is needed for the task, for example a back-up blade. Is an alarm raised?

14 Put a database under use by a competing program, lock a record so that it can’t be accessed.

S
o
m

e
 e

x
a
m

p
le

s
EXAMPLES OF FAULT INJECTION (3)

© 2019 Nokia45

S
o
m

e
 e

x
a
m

p
le

s

Consider test cases which have single, double, multiple and sequential failures

These can uncover the less common failure modes

Traffic Tests

1 Send traffic to a node that cannot process traffic (locked, not configured)

2 Send traffic to an invalid IP address.

3 Force a switchover of traffic destination address

Access to
resources

4 Have multiple processes generate interrupts (e.g. time-alarm)

5 Fill the file system/hard disk to its capacity. Is there an alarm?

6 Assign an invalid file name

7 Force the hard disk or flash memory to be busy or unavailable

8 Turn on logging and tracing to maximum extent

Upgrade

9 Start upgrade and then roll back in the middle of the upgrade

10 Upgrade with data or file needed for the upgrade missing

11 Abort upgrade

12
Start upgrade. Do all management interfaces show the correct upgrade status. Rollback the

upgrade. Do all interfaces have the correct status.

EXAMPLES OF FAULT INJECTION (4)

© 2019 Nokia46

• Push the system past it capacity limit to trigger overload

- Push the system to its limit, then change the configuration to reduce available capacity

• Changing configurations

- Set the system up with configuration A and then set the system running. Modify configuration to one that is not
allowed

• Try something “not clever”. For example, try to shut down a live node with thousands of live calls/data sessions

• Perform bulk updates in OA&M while pushing traffic to its maximum

• Overload the system with End User Equipment

• Set the date/time to be incorrect or out of sync (should cause messages to be rejected)

• Block or delay heartbeats between nodes (simulates I/O congestion)

• Block a resource, for example block a port or remove a needed file

• Failover in an N+1 system to a dead system

• Break links between nodes at random times
(simulates real life radio connections going down, fibre cuts and power outages)

Examples 1: Stress Test a Telecommunications Network

<Public>

In general, teams need to consider what are the most likely areas for software robustness defects

© 2019 Nokia47

Test with max capacity traffic flowing through the user plane.

• Change traffic profiles - various types of service (data, web browsing, VoIP, handovers,
add/drop users)

• Overload. Try to push a higher number of connections into the channel than it can handle.

• Overload the signalling/control plane

• Push high throughput with varying packet sizes (large, small, corrupt, packet loss)

• Perform stressing OA&M operations during high traffic load e.g. garbage collection, download
back-up data, reconfigure the parameter set.

<Public>

Examples 2: Stress Test a Telecommunications Network

© 2019 Nokia48

• What areas of the software to focus on for robustness testing ?

• What are the realistic faults ?

• What types of fault to insert - invalid input, corrupt messages, stressful environment ?

• Where to inject (external or internal interface) ?

• Characteristic of fault injected (transient, intermittent or permanent) ?

• How can we stress the software in the background, for example to stress CPU,
memory, I/O channels ?

• Are we testing the critical areas – what is the coverage of:

- Areas of focus identified in test planning phase

- Error handling mechanisms

- Critical interfaces

Test Cases – Questions To Consider

<Public>

© 2019 Nokia49

Steps For The Stability Run

The long run stability test is an excellent opportunity to perform robustness testing

▪ Initial soak cycle: Start with Initial soak configuration. Increase traffic during soak; Start
with 60% load increasing to 80% moving up to 100% (mixed traffic). Monitor Memory &
CPU usage, monitor database integrity on key elements, monitoring the number of
failures.

▪ Maintenance Test: Run maintenance tests and during the maintenance interval, grow the
network to increase its traffic carrying capacity, e.g. add another interface card, add
another switch etc. Monitoring the number of failures. Maintenance activities performed
with mixed traffic.

▪ Final soak cycle: Increase the load to 60%, to 80% moving up to 100% (mixed traffic) of
the new capacity. Monitor the number of failures over the cycle (w/ mixed traffic).

▪ Perform maintenance/recovery tests: on a loaded network - monitor failures of key
elements and recovery

<Public>

© 2019 Nokia50

Stability Run Details

Initial Soak
Test

(no maintenance activity)

Maintenance
Test

Measure Traffic

Load Traffic

Final Soak
Test

(no maintenance activity)

Grow Network

Measure Traffic
While OAMP Measure Traffic

Load Traffic

Recovery Test
Crash, Resets

Time
0 24 hrs 90 hrs72 hrs48 hrs

Fail Components

60% A

60% B

80% B

100% B

60% B
100% A

4hr 4hr 24hr

Traffic
Load

Load X% of network capacity determined by CPU and Memory Utilization;
Other elements must be configured to have adequate capacity to not become a bottleneck.

% of initial capacity
A

48hr 52hr 56hr 72hr

% of final
capacity B

80% A 80% A

Measure Traffic

Initial Network Capacity A

Final Network Capacity BGrow Capacity
(Ports/Links)

Measure Traffic,
Failures

90hr

Perform OAMP, Measure
Traffic, Failures

Measure Traffic,
Failures

Perform Recovery
Tests Measure
Traffic, Failures

* picture not to scale

<Public>

© 2019 Nokia51

Robustness Testing Effort-Effectiveness
Guidelines

Feature Testing –
“normal”

Effort
(cost)

Effectiveness in
Improving Robustness

Stability
Testing

Interoperability
Testing

Power fail
Testing

Stress

Testing

99.99% 99.999% > 99.999%

Fault Insertion/Abnormal
Testing

Reaching Five 9’s requires robustness testing, including software fault injection

What about the non software parts of the system ?

<Public>

© 2019 Nokia52

What Is Procedural Robustness?

• Procedural robustness refers to the aspect of robustness associated with the human aspect of the
system, including the operating personnel, documentation & training

• Procedural errors typically happen during:

- Normal OA&M type operations

- Configuration activities

- Installation and upgrade activities

- Abnormal conditions – something is different/something is done under time pressure (human dimension)

• Software robustness to procedural errors

- Does the software manage invalid inputs or stressful environments during these procedural activities

- Does the software alert the user when they want to shut down a node with live traffic

• Problems related to procedural errors

- Reluctance of organizations and individuals to expose human errors

- Human error is highly situation dependent

- Field issue systems report what happened, not why it happened. Hence, development get poor feedback from the field

Improving procedural robustness will improve the overall system robustness

<Public>

© 2019 Nokia53

Types of Procedural Error

• While applying the procedure

• Applying the procedure to the wrong network element
(a live element instead of a back-up element)

• Skipping a step in the procedure

• Using wrong version of procedure

• Not performing the pre-checks

• Not performing the post checks

• Errors involving process;

• Performing hardware change in middle of soak of software retrofit

• Performing software change in the middle of multi-day hardware change

<Public>

© 2019 Nokia54

Challenges for Testers

It is not just black box or sunny day scenario testing

Testers have to get to know the product (from systems engineers, architects and developers)

Aspect Challenge Solution

Learning How do we get to know the program? Testers need input from systems engineers, architects and designers

Visibility
How to see below the surface to see
what is inside the program?

Testers need input from systems engineers, architects and designers

Control How to set internal data values? Testers need input from architects and designers

Risk / selection
Which are the right tests to run?
What are the priorities?

Testers need input from previous defects, architects and designers

Execution What’s the most efficient way to run the tests? Distributed across different phases of testing

<Public>

© 2019 Nokia55

Working Agile

- Agile teams work in short sprints

- Focus is on creating small chunks of working features

- Not always sufficient focus on software reliability during these short sprints

- Some Agile techniques can help:

- Continuous integration

- High levels of automated tested

- Automated static analysis on check-in of code

- Maintaining only one main code branch

• Types of testing not done in sprints:

- Network level verification

- Challenges of real equipment versus simulators

- Performance testing (capacity, throughput, latency, response times)

- Interoperability testing (network elements and different vendors of the same network element)

Ever changing software development practices

<Public>

Teams must consider what are the most appropriate phases to detect software robustness defects

© 2019 Nokia56

Testing challenges

- How do you test multiple configurations in a short timeframe

- How to test areas such as installation, upgrade and migration in a short timeframe

- To assure sufficient coverage, teams must perform software robustness testing at every stage of
testing.

• Telecommunications network comprise internally developed software. However, they also comprise
elements of:

- External software from third parties

- Open source software

• Examples include:

- Operating Systems

- Protocol Stacks

- Database Management Software

- Firmware in devices such as Remote Radio heads(RRH)

Third Party and Open Source Software

<Public>

In general, teams need to consider what are the most likely areas for software robustness defects

© 2019 Nokia57

Summary

Gather Input

• Customer Complaint data

• Outage data

• Customer ticket data

• Customer Scenarios & Configurations

Analyse

• What to test – Which types of test to run

• Identify which sub-systems, components, features, interfaces should be the focus of robustness testing

• Identify which types of software robustness tests are most important

Plan

• Determine what types of fault categories and fault types are relevant

• Determine which test areas are appropriate for each Fault Category/Fault Type

• Assign Fault Categories/Fault Types to the appropriate test area

Test Cases

• Each test area develops the test cases needed to cover the testing assigned to them

• Software robustness requirements
• Architectural input - Hot Spots and Weak Points
• High Risk Areas

<Public>

© 2019 Nokia58

4. Conclusion

<Public>

© 2019 Nokia59

Topics

<Public>

1. Reliability in Telecommunications Networks

– Overview of Nokia

– Current & Future Telecommunications Networks

– Reliability Requirements in Telecommunications Networks

2. Software Robustness

– Definition

– Examples of Software Robustness Defects

– Origin of Software Robustness Defects

3. Software Robustness Testing

– Role of Software Robustness Tester

– Software Robustness Testing as a Distributed Activity

4. Building a Software Robustness Test Plan, including Fault Modelling

– Inputs to the software robustness test plan

– Software Robustness Test Case Examples

– Extending Typical Stability Run

– Procedural Reliability

– Challenges for testers

5. Conclusions

