
Implementing a Protocol Native Managed Cryptocurrency

Peter Mell
National Institute

of Standards and Technology
Gaithersburg MD, USA

peter.mell@nist.gov

Aurelien Delaitre
Prometheus Computing
New Market MD, USA

aurelien.delaitre@nist.gov

Frederic de Vaulx
Prometheus Computing
New Market MD, USA

frederic.devaulx@nist.gov

Philippe Dessauw
Prometheus Computing
New Market MD, USA

philippe.dessauw@nist.gov

Abstract—Previous work presented a theoretical model based
on the implicit Bitcoin specification for how an entity might
issue a protocol native cryptocurrency that mimics features of
fiat currencies. Protocol native means that it is built into the
blockchain platform itself and is not simply a token running
on another platform. Novel to this work were mechanisms by
which the issuing entity could manage the cryptocurrency but
where their power was limited and transparency was enforced
by the cryptocurrency being implemented using a publicly mined
blockchain. In this work we demonstrate the feasibility of this the-
oretical model by implementing such a managed cryptocurrency
architecture through forking the Bitcoin code base. We discovered
that the theoretical model contains several vulnerabilities and
security issues that needed to be mitigated. It also contains
architectural features that presented significant implementation
challenges; some aspects of the proposed changes to the Bitcoin
specification were not practical or even workable. In this work
we describe how we mitigated the security vulnerabilities and
overcame the architectural hurdles to build a working prototype.

Index Terms—Fiat Currency, Cryptocurrency, Bitcoin

I. INTRODUCTION

The United States National Institute of Standards and Tech-
nology developed an architecture for a managed cryptocur-
rency that has many of the features of electronic fiat currencies
and includes a governing entity [1]. It is intended to combine
the strengths of both fiat currencies and cryptocurrencies. In
doing this, it deviates from the goals of most cryptocurrencies
by introducing concepts such as central banking, law enforce-
ment, and identity proofed accounts. It also deviates from
a government controlled fiat currency world in denying the
currency administrator absolute power over financial controls.
It enables a currency administrator to enact policy to create a
specific cryptocurrency instance from the architecture, usually
with immutable configurations that even the administrator
cannot violate. This can promote public trust in the currency
since the limits to the administrator’s power are immutably
recorded on the associated blockchain. The architecture uses
a public permissionless blockchain approach whereby the ad-
ministrator’s actions are completely transparent. Furthermore,
a public set of miners maintaining the blockchain can prevent
the administrator from performing unauthorized actions. At
the same time, the cryptocurrency is designed to prevent the
public miners from taking control from the administrator or
from preventing the administrator’s transactions from being
processed. This architecture thus creates a ‘balance of power’
between the administrator and the public miners. Additional

features include adding role attributes to cryptocurrency ac-
counts that represent fiat currency entities (e.g., commercial
banks, central banks, and law enforcement) such that there is
created a tree based hierarchy of nodes with roles for all users
of the cryptocurrency.

A major limitation to the approach is that it was pre-
sented only as a theoretical architecture. It demonstrated what
might be possible to create through modest forks to existing
cryptocurrencies, specifically using Bitcoin [2] [3] [4] as
an example. The empirical work was limited to proposing
changes to the implicit Bitcoin specifications in [5] and [6]
to add the features necessary for this ‘balance of power’
managed cryptocurrency approach. No code was developed
and no implementation was tested. The ability of [1] to modify
the Bitcoin specification to add the needed features indicated
that a managed cryptocurrency might be able to be built
through a modest fork of an existing cryptocurrency, but it
lacked a proof-of-concept prototype built as a protocol native
implementation.

In this work, we set out to build such a prototype as an
applied research endeavor. We tested whether or not such a
managed cryptocurrency system could be built through modest
modifications to the code base of an existing cryptocurrency. In
this way we explored how to create a protocol native managed
cryptocurrency built into the blockchain platform itself and
explore the advantages of this approach. This was non-trivial
as we did not simply create a token on top of another
cryptocurrency. We also wanted to see if this could be done
efficiently, with only a modest amount of programming effort
(we scoped using half a person year, in part due to resource
constraints). We chose to use Bitcoin since [1] described
their theoretical model through proposing changes to Bitcoin.
We wanted to discover the complexity of modifying Bitcoin
to require identity proofing of accounts, establish accounts
with roles, enable law enforcement functions, enable central
banking functions, and create and visualize a hierarchy tree
of accounts that specifies the scope of control of the various
management and law enforcement nodes.

An unattributed quote says that ‘theory is when you know
everything but nothing works.’ Yogi Berra said, ‘in theory
there is no difference between theory and practice. But, in
practice, there is.’ We found these statements to be true
with regard to our implementation of the theoretical work.
We discovered that the theoretical model contains several



vulnerabilities and security issues that needed to be mitigated.
It also contains architectural features that presented significant
implementation challenges; some aspects of the proposed
changes to the Bitcoin specification were not practical or even
workable. We thus had to augment the material in [1] in order
to achieve a functional and secure system, especially in areas
such as preserving the balance of power, law enforcement
powers, management node powers, bootstrapping the system,
and the needed movement of accounts within the node hi-
erarchy (e.g., when an account holder changes their account
manager). We also encountered difficulties using the Bitcoin
code base which necessitated design changes not foreseen in
[1]. However, in the end we discovered that it was possible to
modestly modify Bitcoin to implement this ‘balance of power’
managed cryptocurrency approach and to do it with a relatively
low amount of programming effort.

In summary, we showed that the theoretical architecture
provided by [1] works and can be implemented efficiently.
However, we had to change, refine, and augment the original
design in order to make it function. This paper describes
these changes and the final prototype implementation which
we have made publicly available on GitHub (any mention of
commercial products is for information only; it does not imply
recommendation or endorsement). Note that due to resource
constraints, our prototype is not a full implementation. The
largest limitation is that the cryptocurrency policy configura-
tion is static, while the full design in [1] permits dynamic
policy changes. While not all features were implemented, the
core functionality was enabled to provide confidence that the
system could be efficiently constructed.

The rest of this paper is organized as follows. Section II
presents the theoretical architecture from [1] and discusses
relevant Bitcoin architectural features. Section III discusses
the vulnerabilities and security issues we discovered in the
architecture. Section IV discusses the architectural hurdles that
we had to overcome. Section V outlines how we created our
prototype system and Section VI presents the related work.
Section VII discusses our future plans for the system and
Section VIII concludes.

II. THEORETICAL ARCHITECTURE

The research in [1] provides an architecture that can be
instantiated into a cryptocurrency instance through specifying
a specific policy configuration. The policy parameters en-
able or disable feature sets while specifying parameters for
cryptocurrency operation. The financially related parameters
are just examples of what could be (e.g., limits on money
production) and are not intended to be exhaustive given that
the identification of financial controls is a related but separate
research area. In this architecture, anyone can create an
account, but an account cannot do anything unless it is granted
one or more roles. The initial block on the blockchain has a
‘genesis transaction’ that grants roles to the root administrator
account and all future role assignments spring from this initial
root account. The root account grants roles to other accounts,
and those accounts in turn may grant roles to accounts. This

Fig. 1. Example Managed Cryptocurrency Hierarchy (from [1])

sets up a hierarchy of accounts in a tree structure with the root
account (or node) being the most authoritative.

The initial root node is given all possible roles so that it can
propagate these roles to other accounts. Of particular import
is the ’M’ currency manager role that enables an account to
give its roles to other accounts (or withdraw granted roles)
and to modify cryptocurrency policy. Other roles include ‘U’
user, ‘A’ account manager, ‘C’ central banker, and ‘L’ law
enforcement. Their abilities are summarized in [1] as follows:

• ‘The U role enables an account to receive and spend
coins. An account for which the U role has been removed
has its funds frozen.

• The A role enables a node to create accounts with the
U role (and only the U role). It may also remove the U
label for its descendants.

• The C role enables the creation of new coins (apart from
the block mining rewards).

• The L role enables an account to forcibly move funds
between accounts, to remove the U label, and to restore
a previously removed U label. However, these actions can
only be performed against nodes with the same or greater
distance from the root.’

Note that in this model the currency administrator controls
the root manager node and thus controls the privileges of all
other nodes participating in the system. It can thus ensure that
the A nodes perform identity proofing of U nodes (if desired).
This can enable law enforcement, at least with a court order, to
identify individuals within the system. This goes counter to the
trend in cryptocurrencies where privacy and non-traceability
are key objectives. An example node hierarchy tree with role
assignments is shown in Figure 1.

There are three types of transactions that enable accounts
with roles to perform their functions: coin transfer mode, role
change mode, and policy change mode. A large portion of [1]
specifies how to modify the nValue field in Bitcoin (which
normally specifies the amount of coin to transfer) to enable
the role and policy change functionality while still enabling
coin transfer (but now only between accounts with the U role).

Lastly, there are two possible security models. There is
an independent mining model where the miners are truly
independent from the currency administrator, but they could
then as a group deny the inclusion of management transactions



(i.e., role changes and policy changes). This would be similar
to a 51 % attack [7] being launched against Bitcoin. To prevent
this there is also a dependent mining model where the miners
must include a certain number of management transactions
every so many blocks. This can prevent a large group of
miners from being able to revolt and exclude management
transactions as with the independent mining model. However,
it shifts the balance of power slightly towards the currency
administrator by allowing them to convey a small financial
advantage to preferred miners. This risk can be arbitrarily
diminished through making certain permanent policy settings.

The theoretical architecture defined in [1] proposed mod-
ifying Bitcoin for its implementation. The original Bitcoin
whitepaper is available at [2] while detailed explanations can
be found in [3], [4], and [5]. Of import to this work is that
Bitcoin transfers coins using transactions. The coins are not
stored in user accounts but are linked to the transactions
themselves. Thus, each transaction has one or more inputs
(Vin fields) that bring unspent coins into the transaction and
one or more outputs (Vout fields) that declare who can next
spend those coin outputs. As shown in Figure 2, a Vin field
from some transaction x brings in an unspent Vout field from
some transaction y. Figure 3 shows the format of a Bitcoin
transaction.

III. DISCOVERED VULNERABILITIES
AND SECURITY ISSUES

We discovered vulnerabilities and security issues in the
theoretical architecture that needed to be mitigated in order to
implement the prototype system. The vulnerabilities enabled
violations of the balance of power, replay attacks, and attacks
against miners. The security issues included improper scoping
of manager and law enforcement powers as well as insecure
bootstrapping for establishing cryptocurrency policy.

A. Preserving the Balance of Power

The research in [1] contains a ‘dependent mining model’
where the manager can specify that x number of management
transactions must be included within each interval of y blocks.
One can set x and y through issuing policy transactions. The
idea is that this model forces the miners to periodically include
management transactions.

However, we have discovered a vulnerability in which the
manager can use this feature to take over the blockchain.
The manager can initially set y to be high and wait for
the community to fully adopt and use the cryptocurrency.
Once a significant amount of value has been invested in the
cryptocurrency, the manager can issue a policy transaction
changing y to be very low. The manager then could, for
example, require management transactions to be issued with
every block and only send those management transactions to
miners whom they favor or control. The miners receiving those
transactions would then not propagate them to other miners,
preventing the other miners from mining any blocks (since
per policy all blocks would have to contain a management
transaction). This way, only miners that the manager favored

or controlled could publish blocks and the manager could
effectively take over the blockchain with effects similar to that
of a 51 % attack [8].

Our mitigation is to simply limit how tightly a manager can
set y. If the specification and developed code reject policy
transactions that set y values below some threshold, then the
manager is prevented from using this method to take control
of the blockchain. The manager could also voluntarily set a
minimum threshold for these values using permanent policy
transactions issued by the root manager node in order to create
public confidence in the cryptocurrency. Even with minimums
set, it should be noted that the manager can still implement this
attack periodically, favoring their own miners every y blocks if
they refuse to issue management transactions in the intervening
blocks. This would give a periodic financial advantage to
manager favored miners but would be highly visible to the
community and would not result in the manager controlling
the blockchain. To minimize the impact of this residual attack
possibility, y should be required to be high enough to make
the financial advantage minuscule. An alternative is to use the
independent mining model discussed in II, but this opens up
the possibility for the miners to revolt against the manager.

B. Preventing Replay Attacks

The research in [1] modifies the Bitcoin transactions to
support roles because the architecture requires that all trans-
actions include roles. They are brought into the transaction
using a modified Vin field; in Bitcoin Vin fields are only used
to bring coin into a transaction. Both uses of the Vin field
use the same cryptographic protections and one would assume
that they would inherit the same security properties. However,
this is not the case and it results in a vulnerability in the
architecture.

Since roles are spent like coins but never get used up (since
you don’t lose a role through using it), they can be spent an
infinite number of times. This means that transactions that use
a role might be able to be replayed. For the typical transactions
also transferring coin (e.g., to pay a transaction fee), this is
not a problem as the replayed transaction will be rejected
because the coin would already have been spent. However,
if the transaction does not involve coin it could be replayed.
This might happen if the manager owns miners servers and
issues management transactions without transaction fees with
the intention that their miners will publish them. In this case,
there would be no barriers to performing a replay attack. This
might result in a situation where law enforcement unlocks
an account but can never securely lock it again because the
original unlocking transaction can be replayed by anyone.

There are several possible solutions. One approach is to
require that all transactions pay some transaction fee while
requiring transaction signatures to sign the entire transaction.
In our attempt to modify Bitcoin as little as possible, our
approach was to change the theoretical model to truly spend
roles as if they were coin; once spent they can’t be spent
again. However, whenever we spend a role by including it in
a Vin field we also re-create the same role in one of the Vout



Fig. 2. Bitcoin Vin[] Field Reference to a Previous Transaction (copied from [5]).

Fig. 3. Bitcoin Transaction Format for Sending Bitcoin (BTC), copied from [5].



fields. The effect is that an account keeps a role when it is
spent but the transaction containing the active version of their
role can change. Probably the most elegant approach would
be to implement the architecture using a cryptocurrency with
an accounts based model so that roles are not stored within
transactions, but instead within a record associated with each
account (discussed more below).

C. Preventing Managers from Attacking Miners

In [1] all accounts must have the U role for them to receive
or spend coin. The purpose is to force all participants in the
cryptocurrency to be identity proofed by an account manager
in order to receive the U role. This in turn supports ‘know
your customer’ laws, which have been a challenge for most
cryptocurrencies [9]. However, this also creates a vulnerability.
The manager could keep track of the accounts receiving block
rewards and remove the U role from those accounts (thus
freezing the funds). The public miners would then have no
financial incentive to mine and then the manager’s own mining
servers could take over the majority of mining. This would
give the manager the ability to launch a 51 % attack [8] and
to a large degree control the blockchain.

Our solution is to enable miners to deposit block rewards
into any account, regardless of whether or not it has been
registered in the system or has any roles. Also, we handle
the coin from these coinbase transactions (the mining reward
transactions) specially such that it can be sent without the
owning account needing the U role. This prevents the cur-
rency administrator from freezing the mining reward coinbase
funds. However, once coinbase coin is sent away from the
original account it becomes normal coin subject to the normal
requirements (it can’t be spent without the associated account
having the U role).

D. Scoping Law Enforcement Powers

In [1] law enforcement powers are both too limited and
too relaxed. They are too limited in that law enforcement
can only lock accounts through removing the U label. Law
enforcement nodes can’t prevent an account using its other
roles (M, C, A, or L). This is a major issue in the event that an
account is stolen. On the other hand, law enforcement powers
are too relaxed in that law enforcement nodes can effect
any node higher in the account hierarchy tree regardless of
whether or not it is on the same branch. This effectively gives
law enforcement nodes a global reach (which is especially
problematic if a law enforcement node is compromised).

Our solution is to reflect account locking not through the
removal of the U role but by setting a locked flag. We use
one of the unused bits in the nValue field for role change
mode to set this flag. If the flag is set it temporarily disables
all roles, not just the U role. This stops all activity by the
targeted account, giving law enforcement the powers it needs
to freeze stolen accounts. At the same time, we put additional
restrictions on law enforcement nodes by only giving them
authority over nodes farther from the root on the same branch
of the node hierarchy tree. More precisely, we define the scope

of control of a law enforcement node by traversing backwards
until the first node is found with the manager role and then
by performing a breadth first search to reveal all nodes within
scope. This enables law enforcement nodes to ‘hang’ off of
manager nodes in the tree (they don’t have to be inline on
each branch).

E. Management Node Powers

In [1] management nodes also had powers that were too
relaxed. They were required to have any role that they would
want to grant. This resulted in management nodes having
powers that they had no intention of using. Also, their scope
of control was the same as law enforcement giving each M
node low down in the hierarchy tree an almost global reach.

Our solution was to limit their scope to nodes reachable by
breadth first search and to limit management nodes to only
having the M role. However, in our approach management
nodes can add any role to other nodes. This gives more
power to a manager node (which might be seen as decreasing
security) but it limits that power to a more narrow scope
creating what we believe is a rational compromise.

F. Policy Bootstrapping

In [1], it is not stated how the initial policy is defined
for an instantiated cryptocurrency. It is implied that some
configuration file, apart from the blockchain, must exist that
provides the original parameter settings. These settings may or
may not then be subsequently overridden through policy trans-
actions on the blockchain. The result may be that some policy
is defined on the blockchain and some through an original
configuration file. Given that the configuration file wouldn’t
have the same cryptographic protections as blockchain trans-
actions, the distributor of the node software for maintaining
the blockchain could conceivably change policy using software
updates through modifying the configuration file.

Our solution is to eliminate the need for the unsecured initial
configuration file. We do this by specifying that all policy is
initially defined as permissive as possible. We then require that
all policy parameters be defined explicitly on the blockchain
within the first x blocks (as defined in the full node software
distribution). Thus early in the blockchain, ideally prior to it
being released publicly, the manager will have to explicitly
record all possible policy parameters within cryptographically
secured blocks.

We also discovered that the original root management node
should not be used to set the initial policy (except for policy
settings intended to be permanent). This is because, per [1],
management nodes closer to the root are more authoritative;
any root manager node policy decisions will prevent any other
management node from changing that policy. Also, the root
management node account ideally should never be used after
the initial few blocks and its keys should be physically stored
in a vault to eliminate the possibility of it being compromised.
Thus, if the root node is used to set policy it should only be
used to set permanent policy that, by design, will never be
changed.



IV. ARCHITECTURAL CHALLENGES

Apart from mitigating vulnerabilities in the original de-
sign, we encountered several architectural challenges where
it was not practical or even possible to directly implement
the theoretical architecture. In this section we describe the
primary challenges, how we modified the theoretical design
to overcome them, and how we implemented those changes.

A. Dual Signature Requirements for Coin Transfer Transac-
tions

In [1] an account must have the U role to both spend and
receive coin. It specifies that these roles must be brought into
each coin transfer transaction using two separate Vin fields.
However, this requires both the sender and receiver to sign the
transaction which would require off blockchain coordination
and some unspecified infrastructure to support this.

This could be resolved by including the coin transfer
recipient only in the Vout field (not the Vin) and requiring full
nodes to check the U role on the account listed in the Vout
field (without explicitly bringing it into the transaction using
a Vin field), at the cost of additional tracking overhead. Our
mitigation was to only require the U role for spending coin.
Any account then can receive coin, but may not be able to
spend it. This results in only a single account needing to sign
coin transfer transactions and eliminates additional overhead.

B. Node Movement

In [1] there is no mention of how accounts can change
position within the node hierarchy graph once they have been
created. This is necessary, for example, for users that want
to use different account managers. Besides moving nodes,
edges in the graph may need to be moved in order to cut out
compromised nodes but leave the rest of the node hierarchy
intact.

To implement the needed functionality, we created the idea
that if a node adds roles to an account that has no roles, this
creates an edge in the node hierarchy graph from the node
adding the roles to the node representing the account gaining
the roles. If an edge already existed to the node gaining the
roles (which would happen if an account received roles and
then deleted them), the prior edge will be deleted in order to
preserve the required tree structure.

To prepare a node to be moved, the relevant account can
unilaterally remove its own roles or else a manager whose
scope covers the node can remove the roles. Using this
paradigm, nodes can be moved around the node hierarchy
tree. It also doesn’t require explicitly coding edge creation and
deletion within the modified Bitcoin protocol, which would
have been unnecessarily complicated. A drawback is that node
movement requires a two step process: one transaction to
remove roles and another to add them back in (thus removing
the old edge and creating the new edge). In our future work
we will design a format where a single transaction does this
atomically. Complicating this may be the need for dually
signed transactions to prevent security violations (which we
are trying to avoid, see section IV-A). Our current two step

approach ensures that the role removal, node movement, and
edge addition only happens through transactions issued by
nodes authorized to perform those activities.

C. Determining Transaction Types

The theoretical architecture in [1] uses the most significant
bits of an nValue field to determine the type of transaction
being processed: role change, policy change, or coin transfer.
The nValue fields, in the original Bitcoin, specify the amount
of coin to be spent. Using the leftmost bits as control bits is
conceivably risky because a bug in the code might interpret the
leftmost control bits as value bits for moving or create large
amounts of coin. More problematic though is that the Bitcoin
implementation uses the leftmost bit of the nValue field as a
signed bit.

For these reasons, we chose to deviate from [1] and not
use the leftmost bits of the nValue field to determine the type
of transaction. Instead, we determined the type of transaction
using the transaction version number; this then determines how
the nValue fields within a transaction are handled. We created
three transaction version numbers, each of which correspond
to the three different modes for evaluating nValue fields (role
change, policy change, and coin transfer). Lastly, we also
changed to using the nValue low order bits for specifying roles
and policy change types in case those nValue fields ever got
interpreted as coin transfer fields through some bug or attack.
This would then limit the damage done by having fewer coin
inadvertently transferred or created.

D. Transaction Fees

Since we determine transaction type (role change, policy
change, or coin transfer) through the transaction version num-
ber, it means that the mode of all the nValue fields in the
Vout fields are determined by that number. However, it is
usually necessary to pay a transaction fee for most transactions
and there is usually change that must be sent back to the
sender. This is not possible then for the role and policy change
transactions because the nValue fields of the Vout fields change
roles/policies; they don’t send coin as in the original Bitcoin
specification. We solved this simply by specifying which Vout
field is always the change sent back to the originator of the
transaction (which may be 0 coin on occasion).

V. DEVELOPED PROTOTYPE

Our prototype was developed publicly through Github
and is available within the project ‘usnistgov/managed-
cryptocurrencies-bitcoin’. We built our prototype through fork-
ing and modifying the C++ Bitcoin codebase available on
Github at ‘bitcoin/bitcoin’.

For flexibility, efficiency, and portability we ran our modi-
fied bitcoin peer-to-peer network for development and testing
on a local virtualized environment. For our testing, we thus had
a single virtual machine (VM) executing the entire distributed
Bitcoin network. We used the Vagrant virtual machine man-
ager with Virtualbox as the VM provider. Within the VM, we
used the Docker Engine to run a set of containers to represent



the nodes on the modified Bitcoin network. This enabled
us to simultaneously run five Bitcoin miners within a single
VM to maintain our test blockchain. Note that we artificially
reduced the mining difficulty to enable quick block production
for testing and demonstration purposes. Lastly, we used the
GraphViz library to enable us to visualize the node hierarchy
tree. To make access control decisions for role and policy
change transactions, it was inefficient to look up individual
node roles using the tree. Thus, we separately maintained an
associative array mapping node names to a list of their roles.
The tree was only necessary for determining the scope of
control of one node over others (e.g., for the law enforcement
and manager nodes).

An example output tree is shown in Figure 4. Within each
node in parenthesis is listed the roles activated for that node
and its state (locked or unlocked). The labels are deciphered as
follows: M-manager, C-central banker, L-law enforcement, U-
registered user, A-account manager, D-disabled account) Node
0 is the root node created in the genesis block. It should
normally never be used directly for security reasons and so
Node 1 was created as the ‘active’ manager. Node 3 is the
central banker; it could have hung off of Node 1 but it was
useful for our example to have it as a child under Node 0. Node
2 is law enforcement with the scope of all that is reachable
from Node 1 (all nodes except 0, 3, and 11). Nodes 4 and 5
are account managers. Node 6 is a user account that has been
disabled by law enforcement. Nodes 7, 8, and 10 are ordinary
users. Node 9 is a node who has had all its roles removed
(either done by Node 9 itself, its account manager Node 5,
or one of the manager nodes 0 or 1). This might have been
done because Node 9 was compromised or because it is being
prepared to move to another part of the tree under a different
account manager. Node 11 is a node that has been active in the
cryptocurrency but has no roles and has never had any roles
(due to their being no edge to it). It represents an account
created by a miner to store coinbase coins, that can be spent
without needing any roles.

VI. RELATED WORK

To our knowledge, [1] is the only work proposing a man-
aged cryptocurrency that has a balance of power where the
public can hold the manager accountable. There have been
many government cryptocurrencies proposed but these differ
in that they are often not managed, don’t use roles, or don’t
have a balance of power.

Multichain [10] is a system that might appear to be similar
in that it contains management features. However, Multichain
enables a permissioned chain where what is managed is
which entities have the privilege of mining. This is opposite
of our prototype that enables open mining. That said, we
may explore modifying Multichain to implement [1] while
leveraging a permissioned chain whose membership is defined
by the current members (not the manager).

There are many government cryptocurrencies proposed and
in development (for example [11], more citations are in [1]).
However, none of these have yet come to fruition except the

Venezuelan Petro [12], which to our knowledge is the only
existing government issued cryptocurrency.

There is research proposing a Fedcoin [13], a cryptocur-
rency that would support central banks with a permissioned
blockchain that complies with ‘know your customer’ laws [9].
It is based on RS—Coin [14], one of many cryptocurrencies
advertised to support central and commercial banks with
international transaction handling. Others argue that central
banks don’t need a cryptocurrency, but instead a new form
of electronic money [15]. There are also concerns with the
amount of power a government could leverage through creat-
ing a Fedcoin [16].

VII. FUTURE WORK

There are two major changes to be made in future iterations
of the implementation: using an account model and better
handling of compromised nodes.

A. Using an Account Model

Bitcoin uses an unspent transaction output (UTXO) model.
Coin is not stored within user accounts but within the transac-
tions themselves. All transactions have outputs (representing
coin) and any unspent output may be spent by another transac-
tion. Who may spend a given output is determined by a script
that usually specifies the public key of a particular account.
There is no single data structure on the blockchain that shows
the coin associated with a particular account.

This works well for Bitcoin, but immediately became awk-
ward for the implementation of our managed cryptocurrency
prototype. In the theoretical architecture, accounts have roles
that specify their privileges in the system and these roles are
specified in nValue fields. Without a central data structure for
each account, the roles had to be treated like coin and be spent
repeatedly as an account used those roles. In our system, an
account’s roles are transaction outputs and the active copy (the
one that hasn’t yet been spent) is temporarily in one particular
transaction. We simplified this, compared to the theoretical
architecture, by requiring that any role additions and removals
repeat the remaining roles. Thus, all of an account’s roles are
always designated within a single transaction, not spread out
among many transactions as would have occurred through a
direct implementation of the theoretical architecture.

Our future approach will be to implement the system
through forking cryptocurrency code that uses an account
model instead of an UTXO model. This is possible because the
theoretical architecture is not tied to any particular cryptocur-
rency. A likely candidate replacement cryptocurrency would
be Ethereum due to its maturity, but this choice would bring
in the added complexity of a codebase that supports smart
contracts. A mature Bitcoin-like cryptocurrency without smart
contract capabilities that uses an account model might be better
suited.

B. Handling Compromised Nodes

In section III-D we expand the law enforcement powers to
disable all the roles of an account to handle the case where



Fig. 4. Example Output Showing a Node Hierarchy.

a node is compromised (in [1] only the ability to send and
receive coin was disabled). However, this does not allow the
compromised node to be recovered. To do this, we propose
that all nodes should have two sets of cryptographic key pairs.
The first set is used for the daily signing of transactions for
the associated account. The second set is stored offline and is
used only to replace the first set. This enables account owners
to unilaterally re-establish control over their accounts without
having to involve a manager node (one with the M or A role).
However, it will require the development and implementation
of a new transaction type to enable this resetting of the first
key pair.

VIII. CONCLUSION

The theoretical managed cryptocurrency architecture pro-
posed in [1] can be efficiently developed from an existing
cryptocurrency codebase and deployed (despite the many
implementation issues that had to be overcome). An important
result of this is that we have shown that the novel balance
of power concept, whereby a manager and public miners
jointly control a cryptocurrency, is a feasible mechanism
to be explored for future cryptocurrencies. Another result
of our work is to show the practicability of adding roles
to cryptocurrency accounts and the capabilities that can be
achieved through these roles (in particular for mimicking fiat
currency mechanisms). Lastly, we note that building such a
protocol native managed cryptocurrency within a blockchain
platform itself was non-trivial but we showed that it could be
accomplished with only a modest cost in programming effort.

In summary, we have shown that the theoretical system
in [1] can be implemented in such a way as to not just
leverage many of the strengths of modern cryptocurrencies,
but also leverage the capabilities of traditional fiat currencies.
While this goes against the goals and directions of most
cryptocurrency efforts which are promoting greater privacy
and autonomy from managing institutions, this result may be
useful for large institutions (e.g., governments) investigating
future electronic currency approaches. We do not necessarily
believe that the architecture in [1] provides the answer for

such a use case, but it and our applied research in this work
may open up new research directions to better support large
institutions issuing their own managed cryptocurrencies.

REFERENCES

[1] P. Mell, “Managed blockchain based cryptocurrencies with consensus
enforced rules and transparency,” in 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Com-
munications/12th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE). IEEE, 2018, pp. 1287–1296.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[3] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in Security and Privacy (SP), 2015 IEEE Symposium
on. IEEE, 2015, pp. 104–121.

[4] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bit-
coin and Cryptocurrency Technologies: A Comprehensive Introduction.
Princeton University Press, 2016.

[5] K. Okupski, “Bitcoin developer reference,” 2016. [Online]. Available:
https://lopp.net/pdf/Bitcoin Developer Reference.pdf

[6] “bitcoinwiki protocol documentation,” accessed: 2017-12-29. [Online].
Available: https://en.bitcoin.it/wiki/Protocol documentation

[7] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, “Where is
current research on blockchain technology? a systematic review,” PloS
one, vol. 11, no. 10, p. e0163477, 2016.

[8] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to betterhow to make
bitcoin a better currency,” in International Conference on Financial
Cryptography and Data Security. Springer, 2012, pp. 399–414.

[9] M. Staples, S. Chen, S. Falamaki, A. Ponomarev, P. Rimba, A. Tran,
I. Weber, X. Xu, and J. Zhu, “Risks and opportunities for systems
using blockchain and smart contracts,” 2017. [Online]. Available:
https://publications.csiro.au/rpr/download?pid=csiro:EP175103dsid=DS2

[10] G. Greenspan, “Multichain private blockchainwhite paper,” 2015.
[Online]. Available: https://www.multichain.com/download/MultiChain-
White-Paper.pdf

[11] L. Coleman. An inside look at chinas government controlled
cryptocurrency project. [Online]. Available: https://www.ccn.com/an-
inside-look-at-chinas-government-controlled-cryptocurrency-project

[12] D. B. Alexandra Ulmer, “Enter the ’petro’: Venezuela to launch oil-
backed cryptocurrency,” Reuters, Dec. 2017.

[13] S. Gupta, P. Lauppe, and S. Ravishankar, “A blockchain-
backed central bank cryptocurrency,” 2017. [Online]. Available:
https://zoo.cs.yale.edu/classes/cs490/16-17b/gupta.sahil.sg687

[14] G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,”
arXiv preprint arXiv:1505.06895, 2015.

[15] A. Berentsen and F. Schar, “The case for central bank electronic money
and the non-case for central bank cryptocurrencies,” 2018. [Online].
Available: https://doi.org/10.20955/r.2018.97-106

[16] T. Aube. The terrifying future of fedcoin. [Online]. Available:
https://hackernoon.com/the-terrifying-future-of-fedcoin-ddcbef2b9592


