University of Nebraska Omaha

Innovative Population-based Approaches for Analyzing Mobility Data in Continuous Health Applications

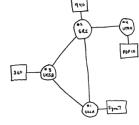
NexTech 2019

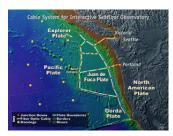
Hesham H. Ali

UNO Bioinformatics Core Facility College of Information Science and Technology September 2019

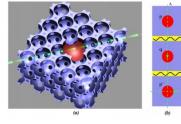
Population Analysis in Biomedical Informatics

- Background and general introduction
- The Health Informatics Angle connecting mobility and health
- The Bioinformatics Angle Systems Biology and Network Models
- The Computing Angle How to implement the proposed models




Background and General Introduction

IT and Future Opportunities


- Creating the future of networking
- Driving advances in all fields of science and engineering
- Revolutionizing transportation
- Personalized education
- The smart grid
- Predictive, preventive, personal medicine
- Quantum computing
- Empowerment for the developing world
- Personalized health monitoring => quality of life
- Harnessing parallelism
- Neurobotics
- Synthetic biology

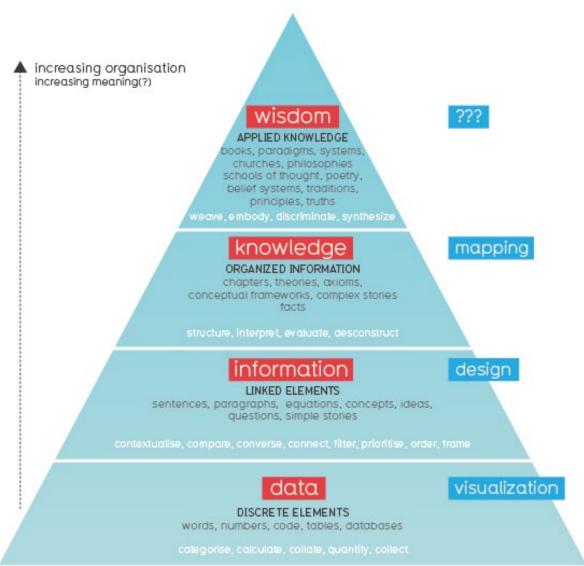


Biomedical Informatics: The new major revolution in Sciences!

- Each generation, a scientific discipline emerges with a bang and promises to change the way we do things – a game changer.
- The last major new discipline was Computer Science over 50 years ago.
- Is it Biomedical Informatics (BMI) for this generation?
- The connection to Human Health add another layer of significance to BMI

Revolution in Healthcare and Biomedical Research

- Revolutionize Biomedical Research and change healthcare models
- So much relevant data is currently available:
 - Remove the guessing aspect in conducting scientific research and practicing medicine
 - Proactive treatment and personalized medicine
- The availability of data shifted biomedical sciences sciences from pure experimental disciplines to hybrid knowledgeexperimental based disciplines
- Incorporating Computational Sciences and Biosciences remains challenging - Interdisciplinary Research? Translational Research? Big Data Analytics?


It's all about the Data!

- How it all began:
 - Advances in medical instruments and computational technologies led to new new research directions
 - Massive accumulation of Biomedical data led to investigating new potential discoveries
 - The availability of enormous various types of public/private Biomedical data
 - How to take advantage of the available data
- Bioinformatics Health Informatics Biomedical Imaging -Public Health Informatics Biomedical Devices
- A new direction is now possible

Data-Information-Knowledge-Wisdom

http://www.ritholtz.com/blog/wp-content/uploads/2010/11/data info knowledge wisdom.pn

- <u>Data:</u> Physical entities at lowest abstraction level; contain little/no meaning – Measured data
- <u>Information:</u> Derived from data via interpretation Processed data
- <u>Knowledge:</u> Obtained by inductive reasoning, typically through automated analysis and iterative collaboration – data + relationships
- Decision Support

Biomedical Informatics in 2019

- Bioinformatics/BMI is well recognized by researchers and practitioners
- Many believe that Bioinformatics or BMI to be that special discipline for this generation
- Back at mid nineties, one would have expected Bioinformatics to be further along after over 20 years.

Current Barriers in BMI

- On the biomedical side:
 - Too much focus on data collection
 - Competition to own the latest technology
 - Excitement associated with New technologies which leads to more raw data
 - The black box syndrome
- On the computational side:
 - Certain level of casualness remain a major concern just another application domain
 - Inconsistent results lack of robustness and reproducibility
 - Heuristics and thresholds
 - Lack of Biomedical-rich integration

Data Generation vs. Analysis/Integration

- New technologies lead to new data:
 - Competition to have the latest technology
 - Focus on storage needs to store yet more data
- Biomedical community needs to move from a total focus on data generation to a blended focus of measured data generation and data analysis/interpretation/visualization
- How do we leverage data? Integratable? Scalable?
- From Data to Information to Knowledge to Advanced Decision Making

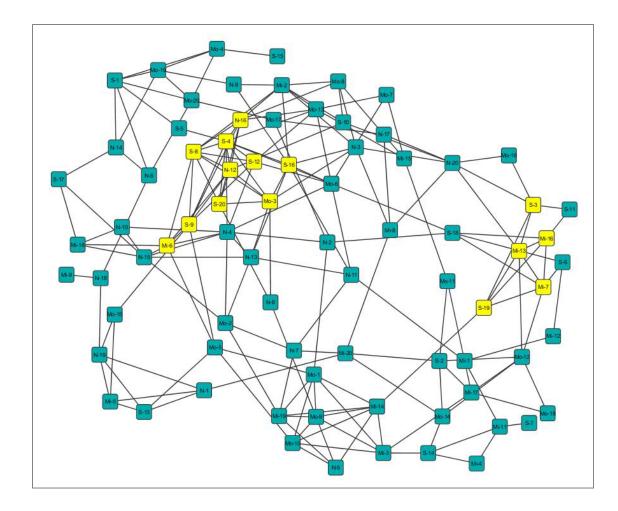
Biomedical Informatics and Big Data

- All the features of Big Data are represented:
 - Volume: New levels of massive data
 - Variety: Only one type of data is not enough
 - Veracity: Not always fully compete or fully trusted
 - Velocity: Data is collected continuously
- Multiple levels of Big Data analysis:
 - Populations
 - Individuals
 - Many granularities in between

Network Modeling and Population Analysis

- It is difficult to provide useful analysis or assessment elements in isolation
- Almost all analysis-related studies are conducted by comparing elements to its population or a group of similar features
- We approach big data analytics by building networks (graphs) of elements under study using different types of inter-relationships among the elements such as correlations
- We then use graph theoretic properties of constructed networks to mine useful knowledge associated with big data

Examples of Population Analysis



- Biological Networks in Bioinformatics
 - Correlations among genes or interactions among proteins
 - Analysis of microbiomes in soil, water, human guts
- Correlation between mobility and health level
 - Monitoring mobility levels
 - Aging of cells and aging of systems
- Similarity networks and population analysis to study safety issues in bridges
 - Identify bridges that are not safe
 - Propose different maintenance schedules of bridges based on their sufficiency rating
- Analysis of financial markets using behavior networks
 - Analysis of stocks
 - Analysis of financial sectors

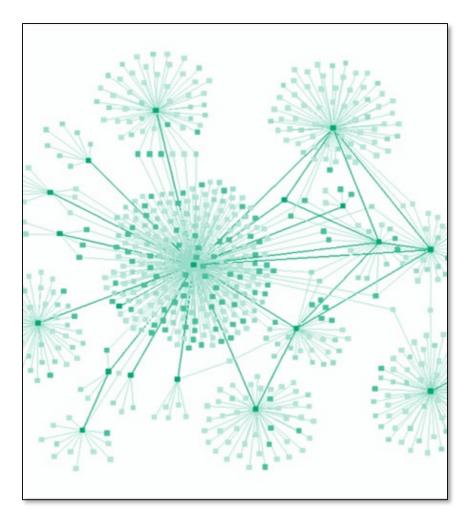
Population Analysis

Correlation graph using mobility parameters

- Integrated Approach:
 - Networks model relationships, not just elements
 - Discover groups of relationships between genes
- Discovery
 - Examine changes in systems
 - Control Group vs. Patient Group
 - Young vs. old
 - Stage x versus Stage y in disease progression

The Health Informatics Angle Connecting Mobility and Health

Wireless Networks in Aging



- Correlation between mobility and health level
- Monitoring mobility levels
- Aging of cells and aging of systems
- Collaboration between Bioinformatics group, Wireless Networks group and Decision Support Systems group

BMI Networks

- A BMI network represents elements and their interactions
- Nodes \rightarrow elements
- Edges \rightarrow relationships
- Can represent multiple types of elements and relationships

Correlation and Co-occurance Network Applications

- "Versus" analysis
 - Normal vs. disease
 - Times/environments
- Model for high-throughput data
 - Especially useful in microarrays
- Identification of groups of causative genes
 - Ability to rank based on graph structure
 - Identify sets of co-regulated, co-expressed genes

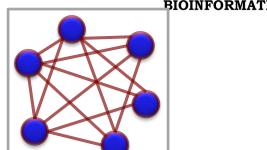
Power of Correlation Analysis

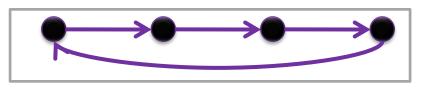
- Correlation versus Causation
- Correlation networks
- Casting the net wide signal and noise
- The use of enrichment before obtaining information and after for validation

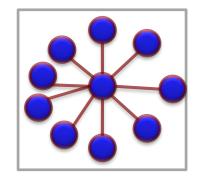
Local Structures

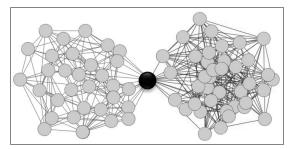
• Cliques

Protein complexes, regulatory modules


• Pathways


Signaling cascades


• Hubs


Regulators, TFs, active proteins

• Articulation points – Gateways

Correlation networks are an excellent tool for mining relationship rich knowledge from high-throughput data

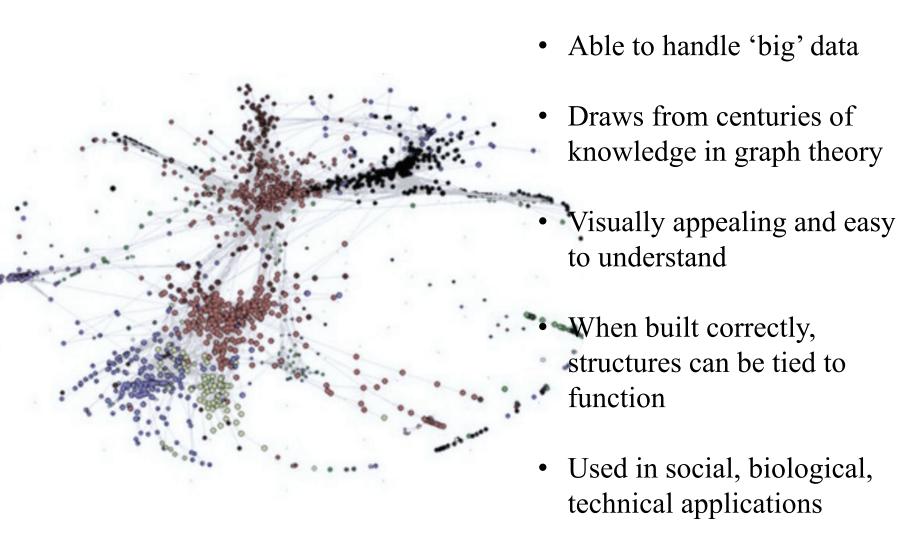
Using systems biology approach, CN can help identify:

- Critical Genes that are essential for survival
- Subsets of genes that are responsible for biological functions

Measures of centrality to identify key elements: Proves existence of structure/function relationship in correlation networks

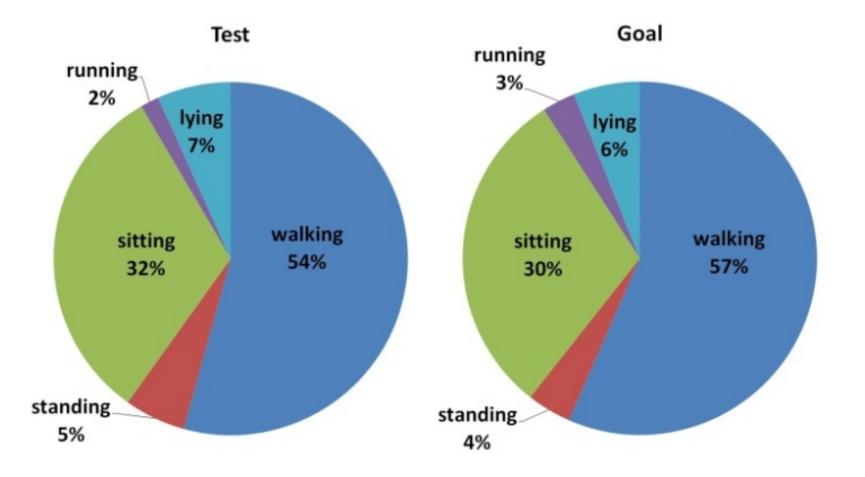
Health Monitoring

- Availability of many large useful devices focus on collecting relevant data
- Availability of numerous helpful software packages
- Lack of data integration and trendiness of the discipline
- Fragmented efforts by computational scientists and biomedical scientists
- Lack of translational work from the research domain to health care applications
- Increasing interest among researchers, industry and educators


How to collect mobility data?

- Laboratory setting
- Real-world setting
- Self-reported data collection method
- Using monitoring devices, sensors and accelerometers or using Internet of Things (IoT) devices

Correlation Networks and Population Analysis


Goals of the Project

- Mobility Profile
 - Patient wearing a 3D-accelerometer will be monitored 24/7.
 - A complete mobility profile will be available for patients and care providers.
- Health hazards Prediction using Mobility Profiles
 - The system will identify anomalous movement and patterns that usually result in a fall or injury,
 - We would be able to take preemptive measures when such a pattern is detected, in order to reduce the occurrence of falls and prevent fall-related injuries.
 - We will develop an index that enables health care providers to determine how likely people are to fall.

Earlier Mobility Models

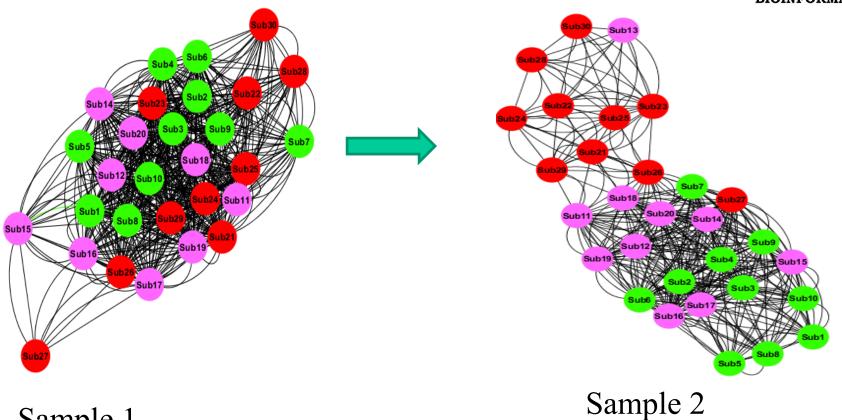
Experimental Studies

- Simulation Study
 - Mobility of nurses in a hospital 8 hour shifts versus 12 hour shifts
 - Monitoring mobility pattern changes at different times during the shift
- Experimental Study
 - Mobility of mice in a cage
 - Identifying/classification of various groups based on mobility characteristics

Nursing Study

- Sample Generation Setting
 - Weighted activity level value
 - Each group has different mobility decline rate per hour
 - Group1 10%/hour, group2 20%/hour and group 3 – 30%/hour (shown in different colors)

	Sub1	-	-	Sub30
Work start	553.78	-	-	384.85
2nd hours	498.40	-	-	269.40
4th hours	448.56	-	-	188.58
6th hours	403.71	-	-	132.01
Work end	363.34	-	-	92.40

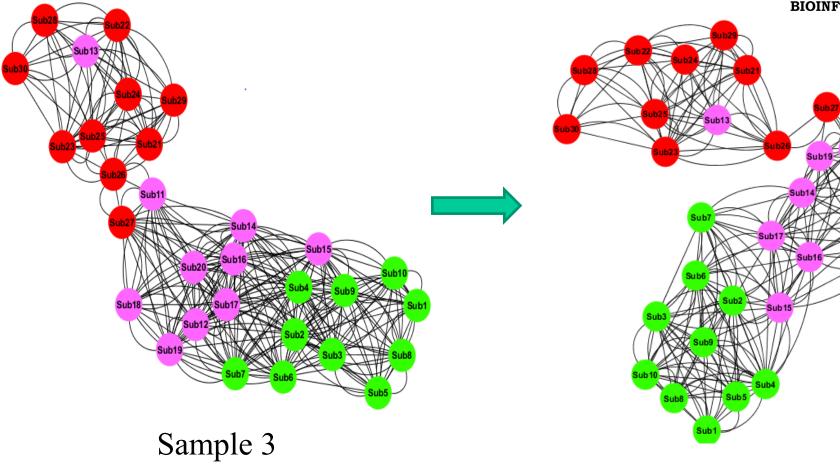

Scenario Description

- Analyzing clusters from correlation networks
- Networks are constructed for every mobility samples captured from nurses at 4 different times as the day progresses.
- Magnitude based analysis applied
- Different levels of mobility decline in nurses identified from networks.

Networks Formed

Sample 1

Green nodes – Group 1 Pink nodes – Group 2 Red nodes – Group 3


Networks Formed

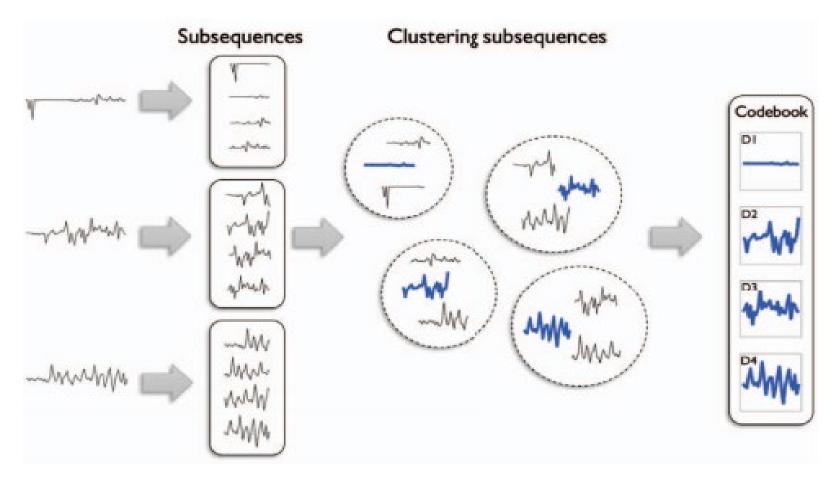
Sub18

Sub20

Sample 4

Green nodes – Group 1 Pink nodes – Group 2 Red nodes – Group 3

Results



- In the beginning of working days, clusters have mixed groups
- As the time progressed in the day, the same colored nodes (nurses) formed a separate clusters according to their raw mobility meausres.
- This network shows different clusters each of low (red), medium (pink) and high (green) mobilities.
- Application to predict medical hazards
- Practical to free-living environment

Feature Engineering- Movement Words Coding Scheme


Vocabulary Generation

- Protocol:
 - 40 Meter Walking (10-meter walkway back and forth)
 - Sampling frequency:100
 - Mild PD

	Control	PD	Geriatric
			S
Number of	10	10	10
subjects			
Gender (M/F)	5:5	6:4	5:5
Age	64 ± 8.4	63.8 ± 9.3	81 ± 4.1
UPDRS III		12.7 ± 6.0	
H & Y		1.7 ± 0.9	

Dataset: Participants and Protocol (Ankle Data)

- Protocol:
 - 4 minute Walking (around the hospital)
 - Sampling frequency:100
 - Moderate PD

	Control	PD	Geriatric s
Number of	5	5	5
subjects			
Gender (M/F)	3:2	3:2	2:3
Age	64 ± 10	72 ± 6.3	81 ± 5.9
UPDRS III		20.8 ± 6.1	
H & Y		2.6 ± 0.5	

Dataset: Participants and Protocol (Wrist Data) First Phase

- Three phases of data collection (6-months period between each two phases)- One week of data per individual-
- Sampling frequency:100
- Mild, moderate, and sever PD (overall mild PD)

	Healthy	Healthy	PD
	young	elderlies	
Number of	24	32	25
subjects			
Gender (M/F)	14/10	10/22	20/5
Age	24 ± 3.6	64.2 ± 7	71 ± 6.2
UPDRS III			
H & Y			1.73 ± 0.83

Modeling: Machine Learning

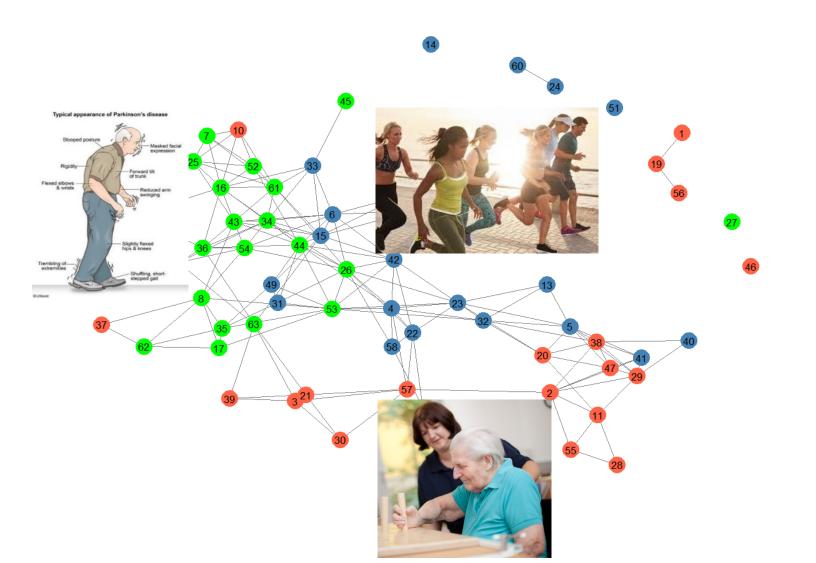
- Standard Features:
 - All features (32)
 - First reduced set of features (22)
 - Using Information Gain and Ranker methods
 - Second reduced set of features (8)
 - Using Pearson Correlation coefficient and ANOVA table
 - Third reduced set of features (7)
 - feature sets with one feature less than the optimal number of features

Document-of-Words Features:

- 10 Features for wrist data and 4 features for ankle data

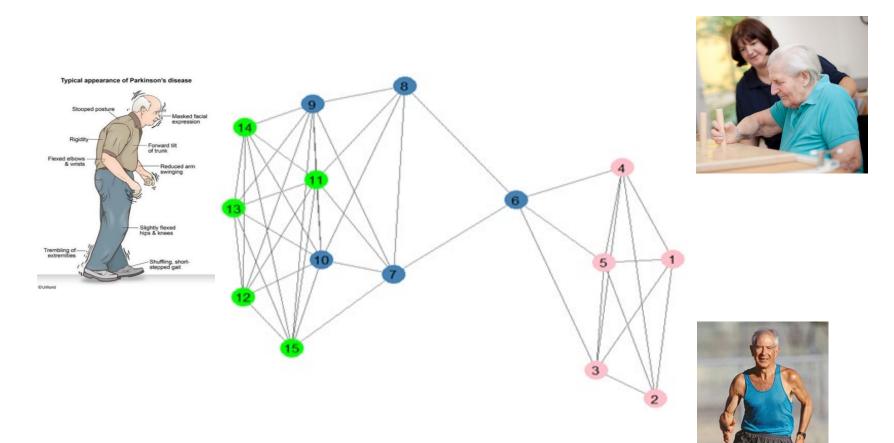
- Various Machine Learning Techniques:
 - SVM, Random Forest, Naïve Bayes, AdaBoost, and bagging
- Validation:
 - K-Fold Cross validation
- Accuracy measures:
 - F-measure, Precision, Recall

Population Analysis and Similarity Network Models

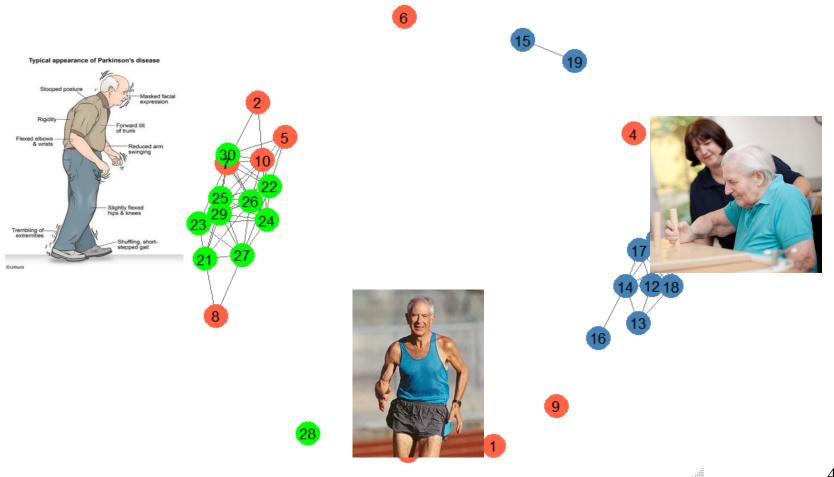


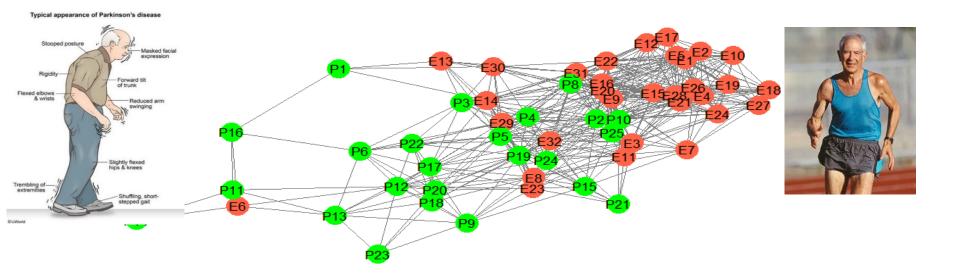
- Pairwise Correlation
 - A pairwise Pearson correlation analysis between subjects, using gait parameters
 - Threshold \rightarrow 90%
 - Significance $\rightarrow 0.05$

- Creating Network Model
 - Vertices represent subjects
 - If two subjects are highly correlated, there is an edge



Similarity Network Model – Wrist Data-Word Features


Similarity Network Model- Ankle Data (Moderate PD)-All Features


Similarity Network Model- Ankle Data (Mild PD) All Features

Similarity Network Model for the data from the first phase of wrist dataset- Threshold at **90%-** PD and HE

Subject	Gender	Age	MoCA	FoG	FAB	TUG	GDS	H&Y	MFES	Lawton
PD8	Male	69	28	2	39	6.7	0	1	10	8 <mark>P7</mark>
PD10	Male	71	28	1	39	6.7	1	1	9.3	8
PD1	Male	83	26	8	39	11.2	0 E25	1	8.6	8
PD21	Male	54	25	0	39	9.0	0	1	10	8

Summary of Case Study

- Correlation Network model worked beautifully when we applied it to both dataset.
- MIGMC provided us with the best set of features
- Accelerometers at ankles and Wrist can capture gait parameters that are useful in early diagnosis of disease.
- The performance of Bag-of-Words model is ,if not higher than, equal to the Standard Model
- Ankle data are more precise in identification of patients with PD compared to Wrist Data
- Still wrist could be argued as a better body location (87.5% accuracy is good enough)

Applications in hospital: Post-operative Nursing Care

- A *post-operative* assessment is very important to a full and speedy *recovery from* any type of *surgery*.
 - a full assessment and an individualized treatment plan based upon the patient's needs and level of function, coupled with clinician expectations

Applications for health subject: Physical therapy / Rehabilitation

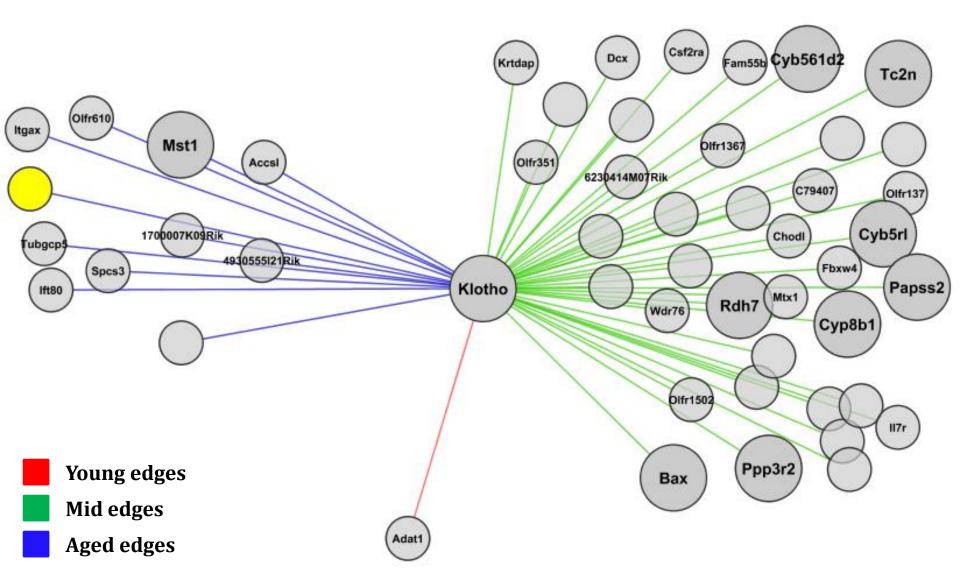
- help a patient perform rehabilitation exercises to improve their balance and mobility, and
- find exercises that meet patient's specific needs and abilities.

The Bioinformatics Angle Systems Biology and Network Models

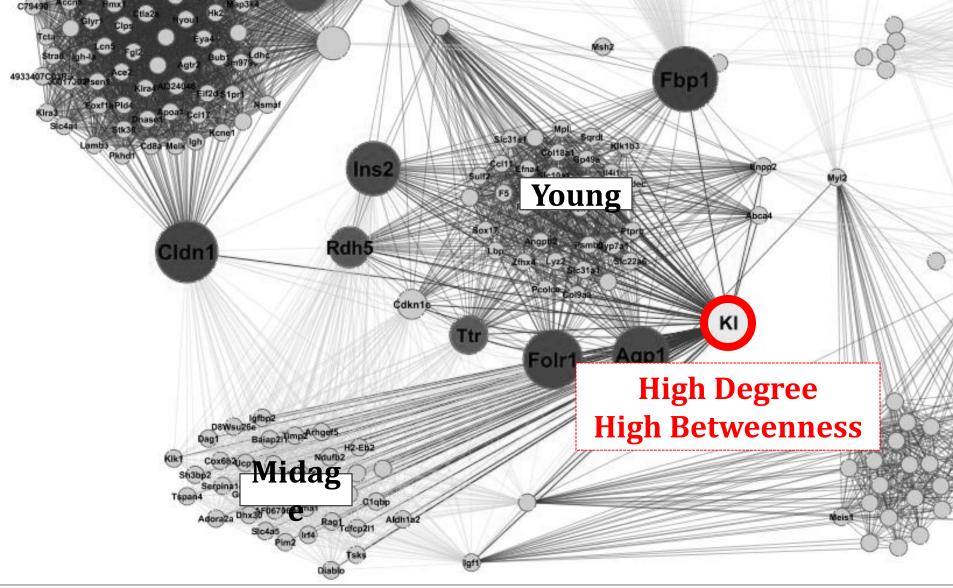
- Integrated Approach:
 - Networks model relationships, not just elements
 - Discover groups of relationships between genes
- Discovery
 - Examine changes in systems
 - Normal vs. diseased
 - Young vs. old
 - Stage x versus Stage y

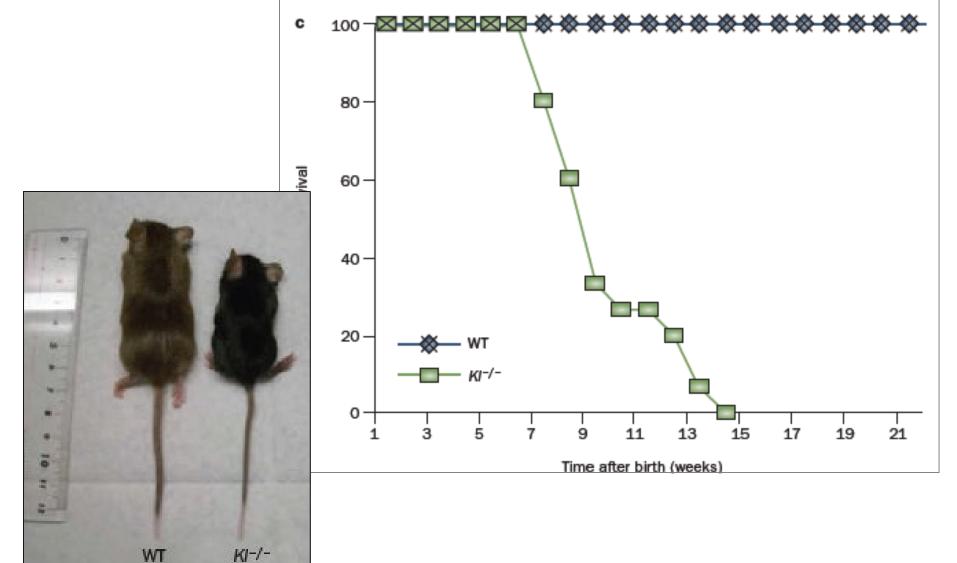
Case Study in Aging

• 5 sets of temporal gene expression data

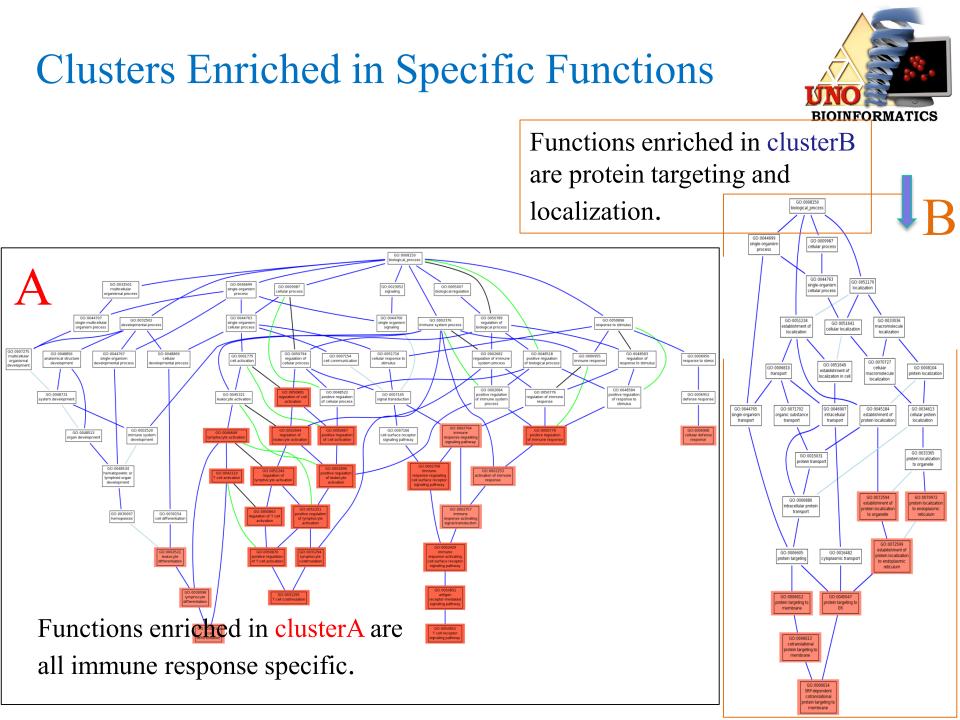

Strain	Gender	Tissue Type	Ages
BalbC	Male	Hypothalamus	Young, mid-age, aged
CBA	Male	Hypothalamus	Young, mid-age, aged
C57_J20	Male	Hypothalamus	Young, aged
BalbC	Female	Hypothalamus	Young, aged
BalbC	Female	Frontal cortex	Young, aged

Hub Lethality

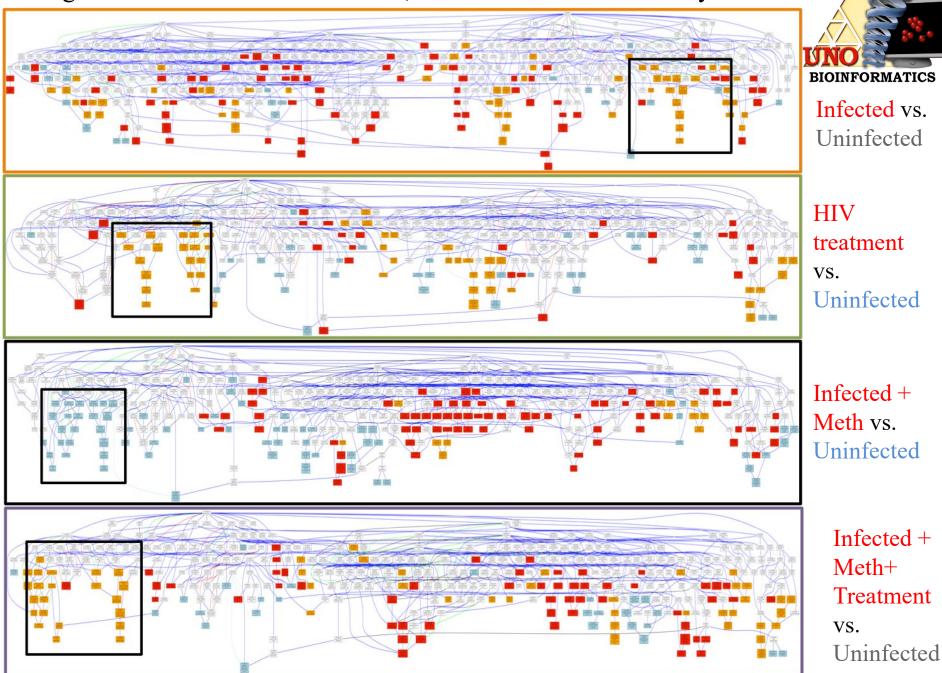

- Young Male BalbC Mouse
 - 12/20 hubs tested for *in vivo* knockout
 - 8/12 lethal phenotype pre-/peri-natally
 - 4/12 non-lethal but system-affecting
 - 0/12 no observed phenotype
- Aged Male BalbC Mouse
 - 11/20 hubs tested for *in vivo* knockout
 - 7/11 lethal phenotype pre-/peri-natally
 - 3/11 non-lethal but system-affecting
 - 1/11 no observed phenotype (Aldh3a1)


Critical Node: Klotho

HIV and Drug Addiction



- Methamphetamine is a major drug of abuse with reported high use by HIV-infected groups
- Methamphetamine users have higher risk of getting HIV infection
- Impact on nervous system is higher when Methamphetamine is used by HIV infected individual (neuronal injury)



Role of Methamphetamine

Infected	Not Infected
Infected + Combinatorial Drugs	Not Infected + Combinatorial Drugs
Infected + Meth	Not Infected + Meth
Infected + Meth + Combinatorial	Not Infected + Meth + Combinatorial Drugs
Drugs	

Orange nodes = enriched in both sets; Blue nodes = enriched only in Uninfected

Obtained Results

- Large number of nodes are enriched in only one network in Infected + Meth network.
 - Many functions enriched in other conditions
 have been dropped out in Infected + Meth
 network.
- Most of the lost functions reappear in Infected + Treated
- Some of these lost functions reappear in Infected + Meth + Treatment

Validation: nef gene (GenBank)

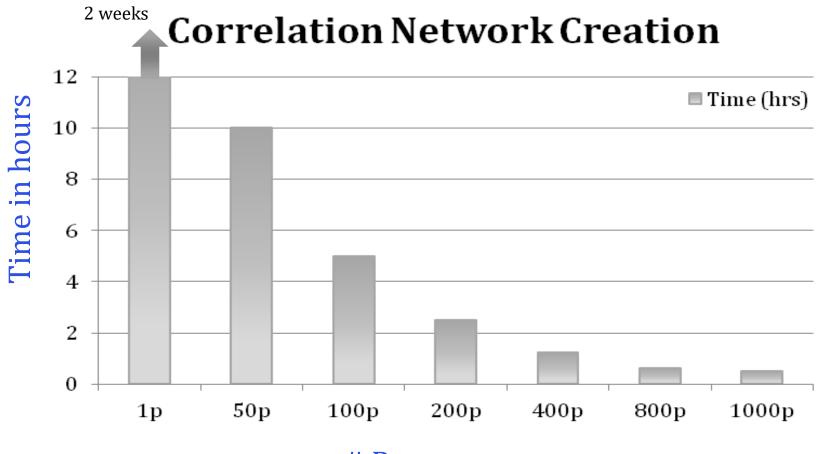
- viral accessory protein
- important for virus replication in vivo
- determinant of HIV-1 pathogenesis
- down-regulates cell surface CD4 and MHC class I molecules; enhances virus infectivity through interactions with multiple cellular signaling proteins

CUFF23 CUFF23
9,000 bp

The Computing Angle How to implement the proposed models

How to implement this stuff? Computational Issues

- Graph/Network Modeling
- Graph Algorithms
- High Performance Computing
 - Beyond surface-level adaptation of known algorithms
- Wireless Networks
- Statistical Analysis
- Storage/processing models Security and Privacy


HPC and Big Data

- Network creation: 2 weeks on PC
 - 10 hours in parallel, 50 nodes
 - 40,000 nodes = 800 million edges (pairwise)
 - 40,000 ! Potential relationships
 - Big data or big relationship domain
- Network analysis: Best in parallel
 - Only 3% of entire genome forms complexes
- Holland Computing Center: Firefly 1150 8-core cluster from weeks to hours/minutes

The Need for HPC

Processors

Technical/Innovative Solutions

- Smarter input data: better user level utilization plus integrated domain knowledge with computational tools
- New data reduction models to deal with large data sizes and allow for better and faster data mining
- Better application specific parallelization custom solutions lead to better performance
- Better scheduling model: multi-layer dynamic scheduling solution

Network Filters

Design a network filter and obtain a sub-network of the original network such that:

- It maintains the important stuff signal
- Remove unimportant stuff noise
- Maintain network elements of biological relevance
- Uncover new ones

Chordal Graph Sampling

Goal: Develop a parallel network sampling technique that *filters noise*, while *preserving the important characteristics of the network*.

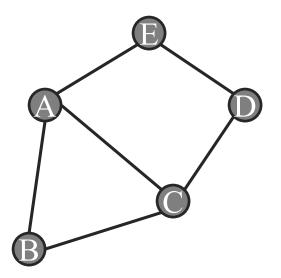
✓ Maximal Chordal Subgraph
 ➢ Spanning subgraph of the network w
 ➢ No cycles of length larger than three

✓ Properties of Chordal Graph

➢Preserves most cliques and highly connected regions of the network

≻Most NP hard problems can be solved in polynomial time

Complexity of finding maximal chordal subgraphs:


O(|E|*max_deg)

Why chordal graphs?

• Chordal graphs are triangulated

- We want to preserve K₃ subgraphs (triangle)
- K₃ graphs/motifs are known to represent co-regulated genes
- Use chordal graphs as a filter for finding co-regulated structures

Subgraph formed by A,B,C is more likely to be biologically relevant.

If gene A and gene B are co-regulated, and if gene A and gene C are co-regulated, then genes B and C will be co-regulated.


Biosciences at Crossroads

- Many Scientific disciplines are now at crossroads
- The proper penetration of IT represent tremendous challenges and great opportunities
- The importance of interdisciplinary approach and knowledge integration to problem solving
- The need for in-depth analysis and problem solving rather than the surface-level approaches
- This may lead to scientific revolution

Acknowledgments

UNO Bioinformatics Group
 Kiran Bastola
 Sanjukta Bhoomwick
 Kate Cooper
 Dario Ghersi
 Ishwor Thapa
 Ling Zhang

Sean West Vi Dam Suyeon Kim Donovan Orn Elham Rastegari

- Funding Sources

 NIH
 NSF
 Nebraska Research Initiative
- Former Group Members

 Alexander Churbanov
 Xutao Deng
 Huiming Geng
 Xiaolu Huang
 Daniel Quest
 Julia Warnke-Sommer

