Panel on

Services in Smart Cities: All about Security, Mobility and Autonomy

Moderator and Panelists

Panel Moderator **Kevin Daimi**, University of Detroit Mercy, USA

Panelists

Antonio José Ribeiro Neves, University of Aveiro, Portugal
Irina Topalova, Technical University Sofia, Bulgaria
Petre Dini, IARIA, USA
Kevin Daimi, University of Detroit Mercy

Topics

- Smart Cities Security (Kevin Daimi)
- Autonomous Agents in Smart Cities (Antonio José Ribeiro Neves)
- Implementation and Impact of Artificial Intelligence on Smart Cities. (Irina Topalova)
- Mobility as a service: crowd mobility, vehicular flow, and mobility-driven energy balancing (Petre Dini)

Questions that will be answered

- How can mobility-as-a-service cover the spectrum of mobility facets?
- What is the impact of mobility on the energy systems?
- Is the population sufficiently and culturally aware to embrace mobile (self-driving) entities?
- What are the possible areas for improving the AI applications in TMT and achieving high efficiency?
- What are the main challenges of autonomous vehicles in current cities?
- How will smart cities deal with (and accelerate) the use of autonomous vehicles?
- Are smart cities secure?

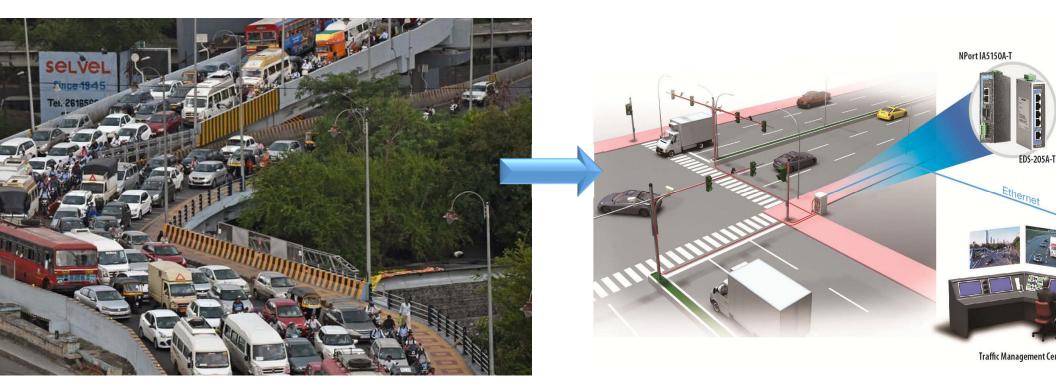
Implementation and Impact of Artificial Intelligence over Smart Cities

Artificial Intelligence to transform TMT (Technology, Media and Telecoms) smart sities

mart sities

- he United Nations' World Cities Report predicts that by 2050 over 0% of the world's population will be living and working in cities.
- A smart city is characterised by the integration of technology into a trategic approach to
- ustainability,
- itizen well-being and
- conomic development."
- cording to Scoring methodology, Juniper Research, 2017)

advanced technologies, such as IoT (Internet of Things:


cal devices that are connected with each other and the Internet) to ve their operations and services.

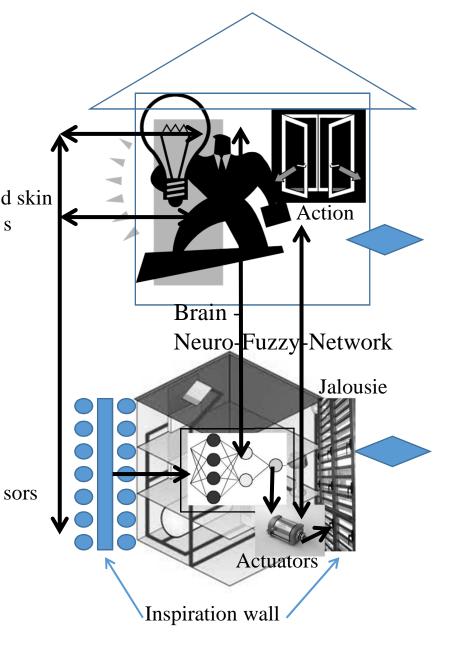
se services are often based on intelligent automation (PLCs) -

ded to control all services, the communication between end sensors gs).

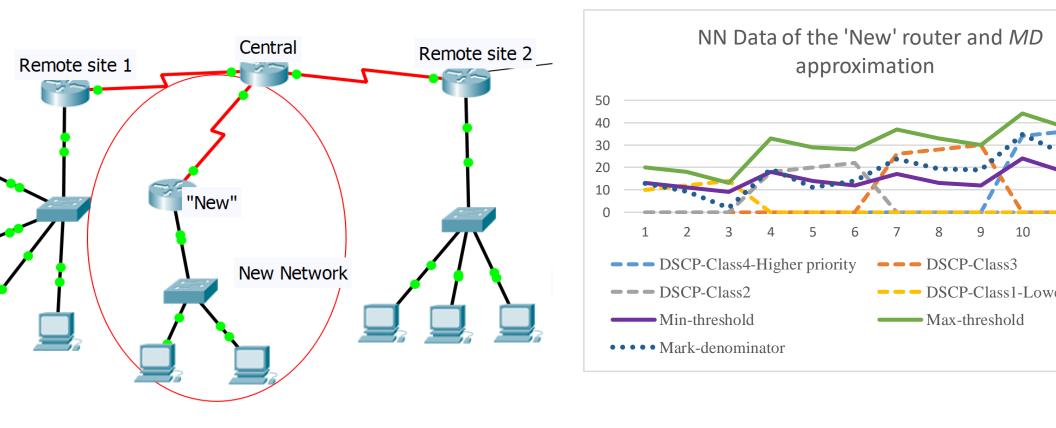
ort: *How connected and efficient* are the services?

city gathering data from real-time traffic monitoring and using this data to adjust flow, based on emergency response requirements?

- **blic Safety**: Is intelligent video surveillance analytics or predictive crime d fire risk software being used?
- ergy Sectors: Is the city applying technologies, such as Artificial elligence controlled *smart traffic light systems*,
- me energy storage solutions, solar panels etc.?
- **zoelectric pavements** set on the most busiest/crowded areas



ding and architecture area


Doris Kim Sung - University of Southern California bimetal thermal plates for "self ventilation skin of the build

munication area – for traffic prediction and congestion avoidance

he Technology, Media and Telecoms (TMT) industry will be one

- the first to be transformed.
 - Over the next three to five years, the combination of AI and 5G will power the emergence of a new generation of devices that
 - will redefine the word 'smart' by differing from today's.

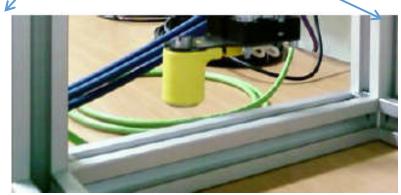
ible areas for improvement the application of AI in TMT, ain er efficiency?

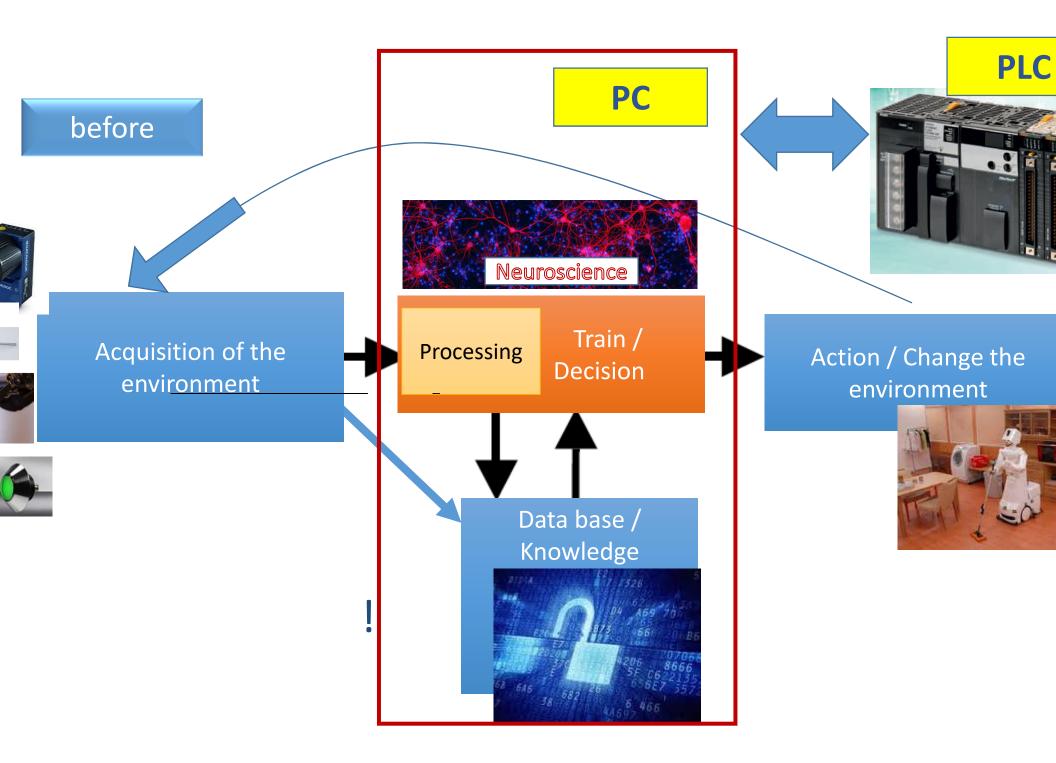
- o many end users and need for increasing the calculation power
- romorphic Chips potentially capable of accelerating Machine Learn
)
- ent in implementing AI in the human-machine interface include vo tures, emotions.
- plementation of AI in API (Application Programming Interface)-
- omating the process of **discovering APIs**
- chine behaviour prediction in **machine-machine communication**-to-PLC)

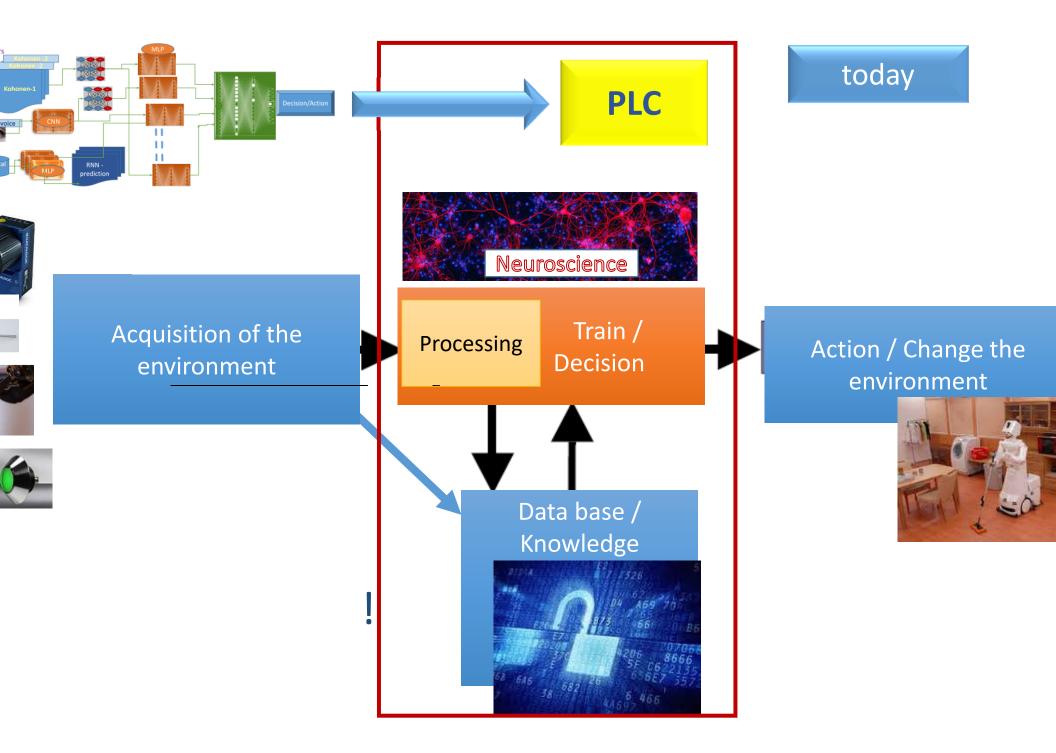
- m industrial machinery to munication,
- lets innovators reimagine the art of possible and enable decisionking that is better and faster — and ed on vastly more information.
- e outcome for the industry will be a rld that's very different from today but which is already taking shape und us.

the past

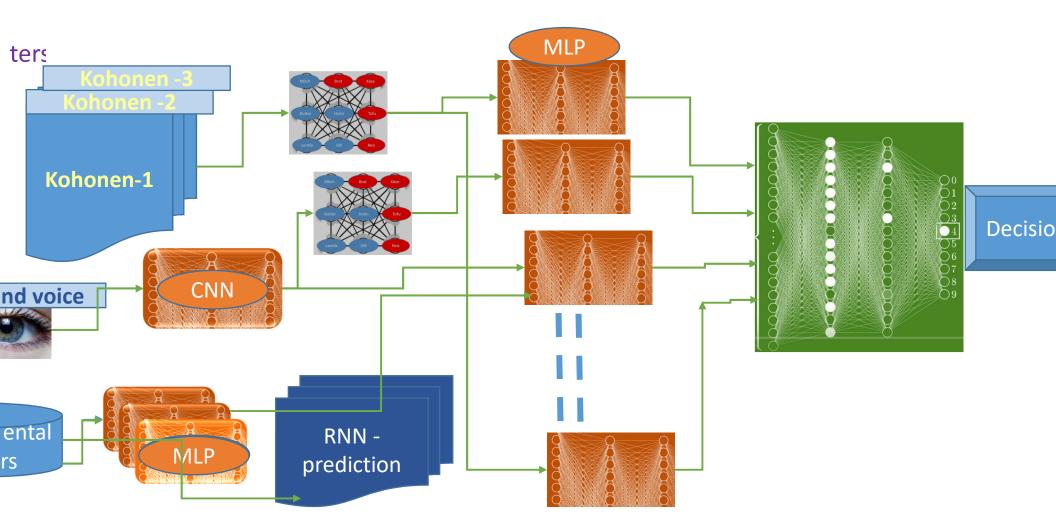
Voice control


Even during a home off-duty w




- ently, the focus of AI in many industries is on developing techniques such as *deep*
- g, natural language processing.
- ng *need for advanced computing power* probably from quantum computing
- r further understanding of more advanced cognitive and emotional responses an

- (Programmable Logic Controller) good method for controlling any ustrial processing but it did not e full picture about this process in
- time. ral network can make a survey on process at all time. Learning NNs expect the next instruction of the
- ustrial operation before applying
- input signal controlling.



ferent types of NNs to solve individual subtasks ted in a network for making a final decision

demonstration – AI – MLP Neural Network in a PLC – make decision in real-tim

[e0B1 "main" 317\SIMATIC 300(1)VCPU 317-2 PN/DP\\081_0NLINE]					🙀 LAD/STL/FBD [@OB1 "main" 317/SIMATIC 300(1)/CPU 317-2 PM/DP\/OB1_ONLINE]	
FLC Debug Mew Options Withdow Help					File Edit Insert FLC Debug View Options Window Help	
· 문화의 이 이 아슬 등 길에 보기 🗖 이 바뀌- 이 바누가 제 두 가 된 🕅					_ D 📽 🖏 🗐 😂 🖄 🖻 🤅	N 이 이 M 🖕 🗐 🏭 🖉 🖄 🔲 🔲 🏭 🖓 다 다 가 더 더 그 거 🕅 👘
Contents Of: 'Invironment' Interface'						Contents Of: 'Environment'Interface'
Bane					- D Interface	Name
TEXP				## New notwork	H-B TEXP	TERP
5				R-m Dislogie		-
11				🖲 🤐 Comparator		
				i ∰ Converter I → ∭ Counter	COMMENC:	
				🗄 🚾 DB cal		
DB1 et PLC Asynchronous DG Writer					Network 1 : Title:	
"DN1"					Comment:	
FB1		Избор на файт с данна	1 2 3 4 5 1 0.0000. 0.0000. 0.0001. 0.0044. 0			
"Search Max Value"		EVDocuments and Settings\Administrator\De	2 0.0000. 0.0000. 0.0000. 0.0000. 0.0002. 0			
EN ENO		3apezuare	3 0.0000. 0.0000. 0.0000. 0.0000. 0.0002. 0		p8101	M300.1
			4 0.0000. 0.0000. 0.0000. 0.0000. 0.0017. 0		FB101	"M300.1"
1 m 1	1D69739247 "DK1".	Редаре и колони	5 0.0006. 0.0019. 0.0091. 0.0079. 0.0178. 0		EN ED	0
inpl MAXVALUE -		Pegeoe: 40 Nax: 40	6 0.0000. 0.0000. 0.0003. 0.0010. 0.0026. 0			R
		Konow 62 Max 62	7 0.0000, 0.0003, 0.0015, 0.0043, 0.0110, 0		ERRO	<u>N</u>
1np2	49		8 0.0000. 0.0002. 0.0011. 0.0032. 0.0079. 0			
	"EK1".	Hacrpoakos PLC	9 0.0449. 0.0419. 0.0449. 0.0019. 0.1507. 0		Network 2 : Title:	
Inp3 55-	RECOGNCLAS	Howep NN DB: 101	10 0.0000, 0.0024, 0.0273, 0.0783, 0.1393, 0		Comment:	
11.po 55	5	Appec NN IN1: 62	11 0.0007. 0.0221. 0.0497. 0.0869. 0.1395. 0		ocumento.	
SEND -			12 0.0001., 0.0159., 0.0449., 0.0076., 0.1405., 0			~ý
inp4		Peoprar DB: Изключване	13 0.0000. 0.0004. 0.0093. 0.1560. 0.5725. 0	0.2810. 0.0926. 0.0-	H300.1 T1	M1.2
		Pesyman appec: 0	14 0.0000. 0.0000. 0.0000. 0.0332. 0.8987. 0	0.3176. 0.1022. 0.0	"M300.1" S PULSE	
inp5		Продесы	15 0.0000. 0.0000. 0.0007. 0.0962. 0.7726. 0	0.2999. 0.0990. 0.0		Q ······ () ·····
		S: стартиран	16 0.0000., 0.0000., 0.0002., 0.0829., 0.7896., 0	0.29510.09600.0	2.56	
		Спиране Пон 30	17 0.0000. 0.0001. 0.0005. 0.0018. 0.0033. 0	0.00390.00480.0	S5T#1S IV B	1
inp6			18 0.0000. 0.0000. 0.0000. 0.0000. 0.0001. 0	0.0005. 0.0014. 0.00-	R BC	D
		Статус	19 0.0000. 0.0000. 0.0001. 0.0005. 0.0015. 0	0.0028. 0.0048. 0.0		
inp?		Celepsano PLC	20 0.0000. 0.0000. 0.0000. 0.0002. 0.0009. 0	0.0020. 0.0031. 0.0		
		S:1	21 0.0438. 0.0272. 0.0330. 0.0545. 0.0775. 0	0.1030. 0.1138. 0.1I	Network 3 : Title:	
		Besult Peg: 11 → 1052911831 Изпрацине	22 0.0000. 0.0177. 0.0309. 0.0443. 0.0642. 0	0.0914_ 0.1026. D.1(Comment:	
inp8		PLC S=0	23 0.0055. 0.0253. 0.0340. 0.0473. 0.0754. 0			
			24 0.0046. 0.0242. 0.0321. 0.0472. 0.0724. 0		1	
1.np9		Scan cycle: 10 Write DB Calls: 10	25 0.0001 0.0002. 0.0005. 0.0015. 0.0039. 0		M300.1 T22	
		S > 0 S > 1 Row.	26 0.0000. 0.0000. 0.0000. 0.0000. 0.0004. 0		"MG DO . 1" S_PULSE	
10			27 0.0000. 0.0000. 0.0001. 0.0007. 0.0021. 0	0.0035. 0.0044. 0.0	1280	2
inp10	L		×			I
RECRIVE					K 1	
]				
tle:				Of a March 1		
Di Program Ett Dat stu						
:Enor λ 2 Ινία λ 3: Εισεργαίατατασα λ 4: Address Ινία, λ 5: Modify λ 8: Diagnostics λ 7: Comparison /						
		1.000	Abs < 5.2 NH 4	Rd		
🗅 Cr(Documents and De 🛛 🐺 FLC Asynchronous D 👘 SCRATIC Manager - 317 👘 LAD(STL/TUD - [1900						

departamento de electrónica, deti telecomunicações e informática

Autonomous mobile agents in smart cities **SIGNAL 2018**

António J. R. Neves

(an@ua.pt)

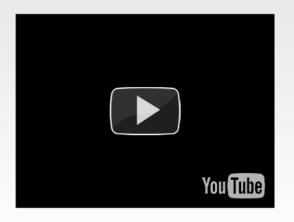
Nice, France

departamento de electrónica, deti telecomunicações e informática

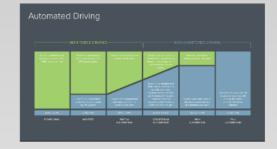
Autonomous mobile agents in smart cities **SIGNAL 2018**

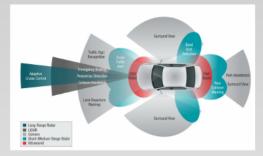
António J. R. Neves

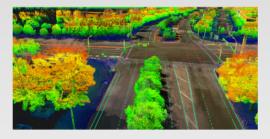
(an@ua.pt)


Nice, France

Autonomous cars...


UBER, Tesla, Mercedes, ... but also other autonomous agents...





Talk About Self-Driving Cars

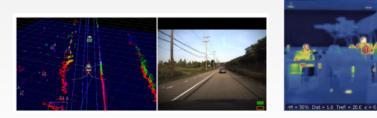
Recent autonomous driving projects

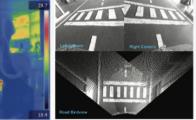
Scientific state of the art – Autonomous cars

[1] Thrun, S. et al. (2006). Stanley: The Robot that Won the DARPA Challenge. Journal of Field Robotics. n. 23(9), p.661–692.

[2] Wei, J., Snider, J. M., Kim, J., Dolan, J. M., Rajkumar, R., & Litkouhi, B. (2013, June). Towards a viable autonomous driving research platform. In Intelligent Vehicles Symposium (IV), 2013 IEEE (pp. 763-770). IEEE.

[3] Grisleri, P. and Fedriga, I. (2010) 'The BRAiVE platform', in Procs. 7th IFAC Symposium on Intelligent Autonomous Vehicles, Lecce, Italy.


[4] Bertozzi, M., Bombini, L., Broggi, A., Buzzoni, M., Cardarelli, E., Cattani, S., ... & Gatti, L. (2010, October). The vislab intercontinental autonomous challenge: 13,000 km, 3 months, no driver. In Proc. 17th World Congress on ITS, Busan, South Korea.


[5] V. Santos et al., "ATLASCAR - technologies for a computer assisted driving system on board a common automobile," 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, 2010, pp. 1421-1427.

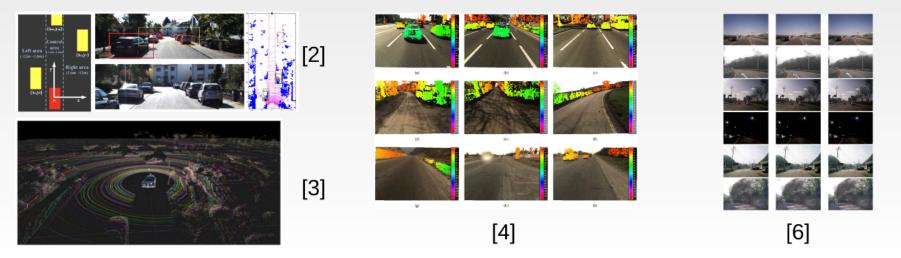
[6] Oliveira, M., & Santos, V. (2011). Autonomous driving competition: Perception approaches used in the atlas project. In Proc. of Intl. Conf. on Autonomous Robot Systems and Competitions, Lisboa.
[7] Jo, K., Kim, J., Kim, D., Jang, C., & Sunwoo, M. (2014). Development of Autonomous Car - Part I: Distributed system architecture and development process. IEEE Transactions on Industrial Electronics, 61(12), 7131–7140.

[8] K. Jo, J. Kim, D. Kim, C. Jang and M. Sunwoo, "Development of Autonomous Car—Part II: A Case Study on the Implementation of an Autonomous Driving System Based on Distributed Architecture," in IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 5119-5132, Aug. 2015.

[5]

[8]

[2]


Scientific state of the art - Autonomous cars

 Almeida, J., Santos, V. (2016). Pedestrian pose estimation using stereo perception. In Robot 2015: Second Iberian Robotics Conference (pp. 491-502). Springer, Cham.
 Chen, C., Seff, A., Kornhauser, A., & Xiao, J. (2015). Deepdriving: Learning affordance for direct perception in autonomous driving. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2722-2730).

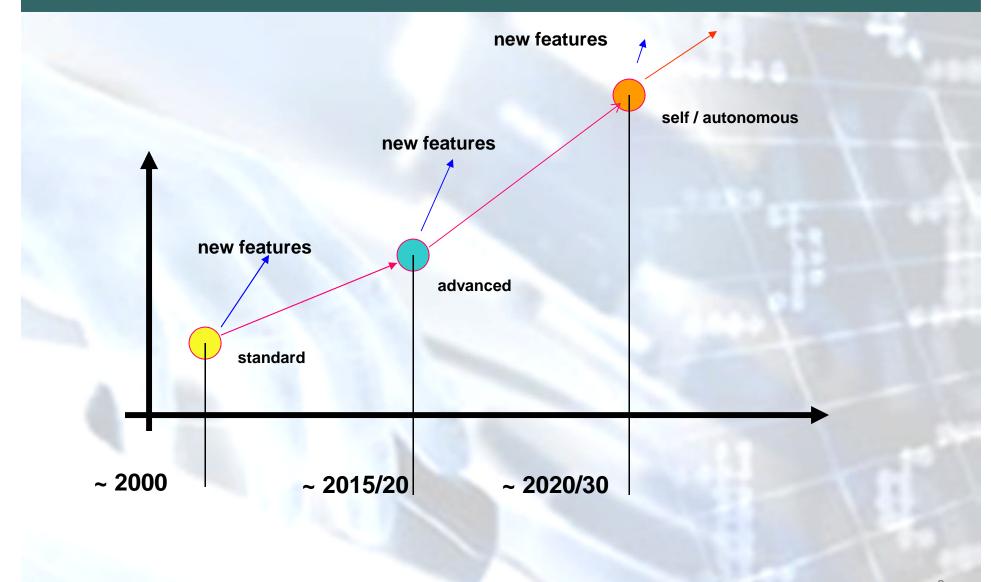
[3] Azim, A., & Aycard, O. (2012, June). Detection, classification and tracking of moving objects in a 3D environment. In Intelligent Vehicles Symposium (IV), 2012 IEEE (pp. 802-807)

[4] Broggi, A., Buzzoni, M., Felisa, M., & Zani, P. (2011, September). Stereo obstacle detection in challenging environments: the VIAC experience. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on (pp. 1599-1604).
[5] Pinto, P., Tomé, A., & Santos, V. (2013, April). Visual detection of vehicles using a bag-of-features approach. In Autonomous Robot Systems (Robotica), 2013 13th International Conference on (pp. 1-4)

[6] Jung, S., Youn, J., & Sull, S. (2015). Efficient Lane Detection Based on Spatiotemporal Images. IEEE Transactions on Intelligent Transportation Systems, PP(99), 1–7.

Panel on ICAS/ICNS

Services in Smart Cities: All about Security, Mobility and Autonomy


On Mobility

Petre Dini, IARIA, USA

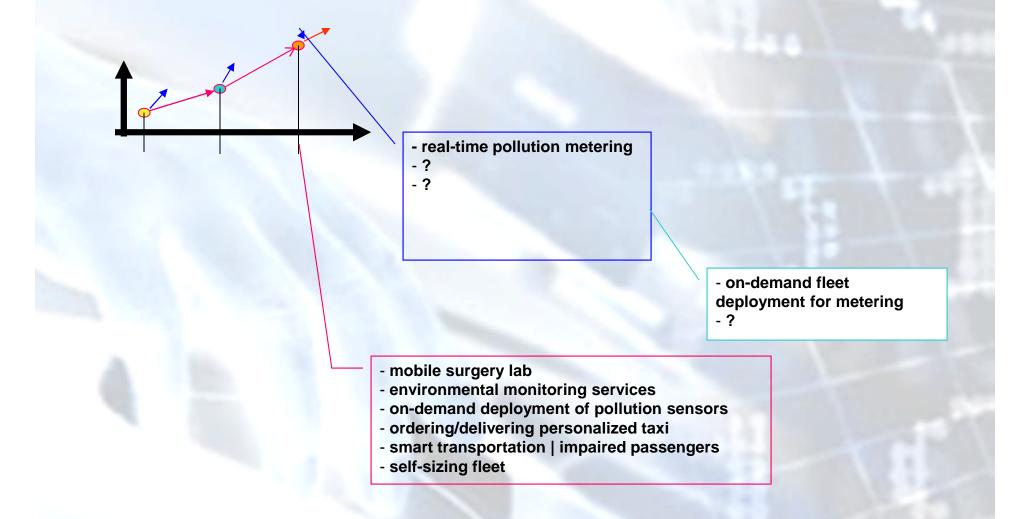
petre@iaria.org

Monday, May 21st InfoSys 2018, May 20-24, 2018 Nice, France

Standard

- optimal path, car size, etc.
- rapidity/covered region
- order a taxi
- parking a car
- transportation systems
- fire/health emergency
- waste mgmg
- postal services

- access disable peoples
- uber service
- FedEx
- postal delivery from home
- waste-by-request
- etc.



Advanced

Self / autonomous

Facets of Mobile Smart Environments (Cites)

- Urban traffic safety apps | security/communication
- Traffic optimizing services | special algorithms/real-time
- Localizing street services (gas, stations, electrical, foods, etc.) | graphics/visual/interfaces
- Tracking citizen | elderly | geolocation | geolocaiton in IoT |

- City service mapping/location | cartography software | cloud-based services | interactive software | dedicated apps

 Wearable smart devices | special screen/interface | special body-related software | body sensing apps | ... chip for monitoring alcohol/drugs

Body systems | special software execution systems | balancing procedures execution/data volumes

- Sensing and data processing | data fusion, data mining, pattern recognition

- Accessibility services | special interfaces | distributed software for bus/pedestrian/disabled drivers
- Forecasting services | databases, datasets, information mining techniques, machine learning

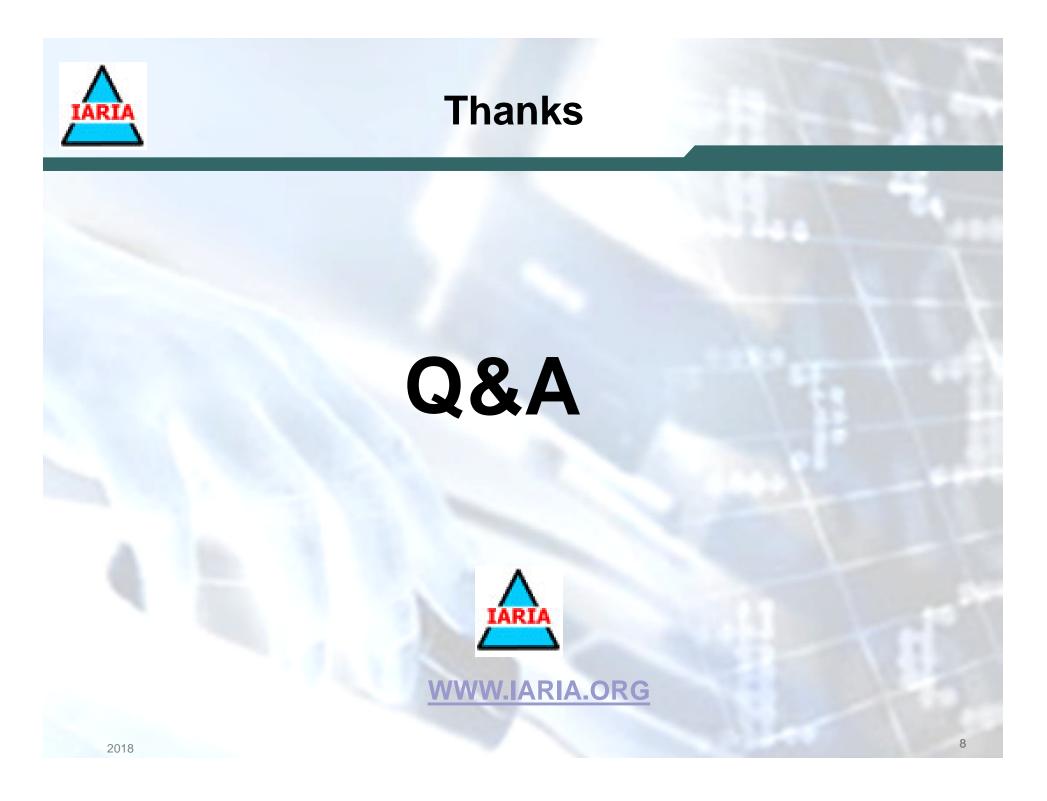
Sensing and dissemination info on pollution and noise | surveillance, alarm systems, optimal traffic rerouting

Public services | waste management |mobile sensing | waste estimation | redirecting services where needed

 – City evolving services/systems | version software managements, rule-based systems, run-time updates and testing

- Smart utility control/measurement/payment | gas + electricity + | special/dedicated networks + software

- Goods/products delivery | drones systems
- -Self-driving cars + electric cars | artificial intelligence + cognitive modeling +
- etc. | etc.



Yet to consider

- Q1: How can mobility-as-a-service cover the spectrum of mobility facets?
- Q2: What is the impact of mobility on the energetic system?
- Q3: Is the population sufficiently and culturally aware to embrace mobile (self-driving) entities?
- Q4: What is the drawback on citizen well-being, considering accessibility

Mobility-as-a-Service might take advantage from a Mobility-Platform, where

- Services are offered and ordered on a personal or corporate basis
- Services are developed, maintained, ... by a Smart-City entity

Panel on Services in Smart Cities: All about Security, Mobility and Autonomy Conclusion

Moderator and Panelists

Panel Moderator **Kevin Daimi**, University of Detroit Mercy, USA

Panelists

Antonio José Ribeiro Neves, University of Aveiro, Portugal
Irina Topalova, Technical University Sofia, Bulgaria
Petre Dini, IARIA, USA
Kevin Daimi, University of Detroit Mercy

Panel Conclusion

- Smart cities have complex connectivity infrastructure.
- AI is used to make these cities intelligent
- Autonomous vehicles will be a reality in smart cities infrastructure
- Because of their connectivity and complexity, smart cities will inherit all the currently available security attacks in addition to any specific future attack
- The hardware limitation (speed and memory) makes devices in smart cities unresponsive to a number of security techniques currently used in our computers.