
dbkda-18
 1

The architectures of triple-stores

Iztok Savnik
University of Primorska, Slovenia

Tutorial, DBKDA 2018, Nice.

dbkda-18
 2

Outline

• Introduction
• Triple data model
• Storage level representations
• Data distribution
• Query procesing

dbkda18

Introduction

dbkda-18
 4

Terminology

• Triple-store
• RDF database
• Graph database
• Linked data
• Linked open data
• Knowledge bases
• Knowledge graphs

dbkda-18
 5

Position of triple stores

• Key-value model
• Relational data model
• Triple data model

dbkda-18
 6

Key-value data model

• Simple data and query model
– BASE (Basically Available, Soft-state, Eventual

consistency), CAP theorem
– CRUD (Create, Read, Update, Delete)

• Automatic data distribution
– Consistent hashing, Sharding

• Eventual consistency
– Time-stamps and vector clocks
– Distributed protocols: Gossip, Quorum 2PC

dbkda-18
 7

Relational data model

• Mathematical model of relations
– Intuitive tabular representation

• Query model
– Relational algebra and calculus, SQL

• Scalability
– Round-Robin, hash, range partitioning, sharding

• Consistency
– TPC, distributed 2PC

• Avaliability, tolerance for network partitions

dbkda-18
 8

Triple data model

• Graph data model
– Baseline: graph representation
– RDFS: knowledge representation language

• Predicate calculus, description logic

• Query model
1. Relational model + SQL

2. Key-value access + MapReduce system

3. Algebra of triples + SPARQL

dbkda-18
 9

Triple data model

• Data model
– Baseline triple model

• More complex than KV data model

• More simple and uniform than relational model

– Triple model + RDFS
• more expressive than relational model

• Scalability
– Automatic partitioning is possible

• Hash partitioning, graph partitioning, sharding

• Some ideas from KV model and some from relational model

dbkda-18
 10

Triple data model

• Consistency, availability, tolerance to network
partitions, ...
– Most of the above properties are hard to achieve in

relational model
• Consistency clashes with updates and high replication

• Availability clashes with the weak tolerance to faults

• Tolerance to network partitions would need and upgrade of
RDBMS

– Many ideas from KV model are applicable to TDM
• Hash partitioning, eventual consistency, new storage

systems, ...

dbkda18

Triple data model

dbkda18

Graph data model

• Graph database
– Database that uses graphs for the

representation of data and queries
• Vertexes

– Represent things, persons, concepts,
classes, ...

• Arcs
– Represent properties, relationships,

associations, ...
– Arcs have labels !

dbkda18

RDF
• Resource Description Framework

– Tim Berners Lee, 1998, 2009 ...
– This is movement !

• What is behind ?
– Graphs are fundamental representation ?

• Can express any other data model
• Many times serve as the theoretical basis

– Graphs can represent data and knowledge ?
• Data and knowledge will be integrated in novel

applications
• Many reasoners use triple-representation of

knowledge and data, e.g., Cyc

dbkda18

RDF
– Novel applications require some form of

reasoning
• Intelligent assistants, system diagnostics, ...

dbkda18

RDF

RDF syntax
• N3, TVS
• Turtle
• TriG
• N-Triples
• RDF/XML
• RDF/JSON

Name spaces

• Using short names for URL-s
– Long names are tedious

• Simple but strong concept
• Defining name space:

prefix rdf:, namespace URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#

prefix rdfs:, namespace URI: http://www.w3.org/2000/01/rdf-schema#

prefix dc:, namespace URI: http://purl.org/dc/elements/1.1/

prefix owl:, namespace URI: http://www.w3.org/2002/07/owl#

prefix ex:, namespace URI: http://www.example.org/ (or http://www.example.com/)

prefix xsd:, namespace URI: http://www.w3.org/2001/XMLSchema#

<http://example.org/bob#me> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<http://example.org/bob#me> <http://xmlns.com/foaf/0.1/knows> <http://example.org/alice#me> .
<http://example.org/bob#me> <http://schema.org/birthDate> "1990-07-04"^^<http://www.w3.org/2001/XMLSchema#date> .
<http://example.org/bob#me> <http://xmlns.com/foaf/0.1/topic_interest> <http://www.wikidata.org/entity/Q12418> .
<http://www.wikidata.org/entity/Q12418> <http://purl.org/dc/terms/title> "Mona Lisa" .
<http://www.wikidata.org/entity/Q12418> <http://purl.org/dc/terms/creator> <http://dbpedia.org/resource/Leonardo_da_Vinci> .
<http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619> <http://purl.org/dc/terms/subject>

N-Triples

01 BASE <http://example.org/>
02 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
03 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
04 PREFIX schema: <http://schema.org/>
05 PREFIX dcterms: <http://purl.org/dc/terms/>
06 PREFIX wd: <http://www.wikidata.org/entity/>
07
08 <bob#me>
09 a foaf:Person ;
10 foaf:knows <alice#me> ;
11 schema:birthDate "1990-07-04"^^xsd:date ;
12 foaf:topic_interest wd:Q12418 .
13
14 wd:Q12418
15 dcterms:title "Mona Lisa" ;
16 dcterms:creator <http://dbpedia.org/resource/Leonardo_da_Vinci> .
17
18 <http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619>
19 dcterms:subject wd:Q12418 .

Turtle

Additional RDF Constructs

• Complex values
– Bags, lists, trees, graphs

• Empty nodes
• Types of atomic values
• Types of nodes
• Reification

RDF Schema

• RDFS
• Knowledge representation language

– Not just graph any more !
– AI Frames, Object Model

• Small dictionary for RDFS
– rdfs:class, rdfs:subClassOf, rdfs:type
– rdfs:property, rdfs:subPropertyOf
– rdfs:domain, rdfs:range

RDFS Concepts

Classes

ex:MotorVehicle rdf:type rdfs:Class .
ex:PassengerVehicle rdf:type rdfs:Class .
ex:Van rdf:type rdfs:Class .
ex:Truck rdf:type rdfs:Class .
ex:MiniVan rdf:type rdfs:Class .

ex:PassengerVehicle rdfs:subClassOf ex:MotorVehicle .
ex:Van rdfs:subClassOf ex:MotorVehicle .
ex:Truck rdfs:subClassOf ex:MotorVehicle .

ex:MiniVan rdfs:subClassOf ex:Van .
ex:MiniVan rdfs:subClassOf ex:PassengerVehicle .

dbkda18

SPARQL

• SPARQL Protocol and RDF Query Language

• SPARQL query
– Graph can include variables in place of constants

• Operations
– JOIN (natural, left-join)

– AND, FILTER, UNION, OPTIONAL

• Commercial DBMS-s
– Implement RDF and SPARQL

Example SPARQL query

PREFIX

 abc: <http://mynamespace.com/exampleOntology#>

SELECT ?capital ?country

WHERE { ?x abc:cityname ?capital.

 ?y abc:countryname ?country.

 ?x abc:isCapitalOf ?y.

 ?y abc:isInContinent abc:africa. }

?x

?y

?capital
abc:cityname

abc:isCapitalOf

 ?country

abc:countryname

 abc:africa

abc:isInContinent

Logic - OWL

• Ontology language
– Knowledge representation + Logic

• Based on description logic
– Fragments of predicate calculus
– Hierarchy of DL languages

• OWL reasoners
– FaCT++, HermiT, RacerPro, Pellet, ...

dbkda18

Wordnet

• Princeton's large lexical database of
English.
– Cognitve synonims: synsets

• 117,000 synsets
– Synsets are linked by:

• conceptual-semantic relationships, and
• lexical relationships.
• Include definitions of synsets.

– Main relationships:
• Synonymy, hyponymy (ISA), meronymy (part-

whole), antonymy

dbkda18

Linked Open Data

• Datasets are represented in RDF
– Wikipedia, Wikibooks, Geonames,

MusicBrainz, WordNet, DBLP bibliography
• Number of triples: 33 Giga (109) (2011)
• Governments:

– USA, UK, Japan, Austria, Belgium, France,
Germany, ...

• Active community
– http://en.wikipedia.org/wiki/Open_Data
– http://www.w3.org/LOD

dbkda18

LOD Cloud, 2018

http://en.wikipedia.org/wiki/Open_Data
http://www.w3.org/LOD

dbkda18

http://lod-cloud.net/

dbkda18

Open Data

dbkda18

Freebase
• Free, knowledge graph:

– people, places and things,
– 3,041,722,635 facts, 49,947,845 topics

• Semantic search engines are here !

dbkda18

Freebase
• Based on graphs:

– nodes, links, types, properties, namespaces
• Google use of Freebase

– Knowledge graph
– Words become concepts
– Semantic questions
– Semantic associations
– Browsing knowledge
– Knowledge engine

• Available in RDF

dbkda18

Knowledge graph

• Google’s Knowledge Graph
– 70 billion facts, oct 2016
– Box to the right of search results, since 2012
– Google Assistant and Google Home voice

queries
• Knowledge Vault, Google, 2014

– Initiative to succeed the capabilities of the
Knowledge Graph

• … to deal with facts, automatically gathering and
merging information from across the Internet into a
knowledge base capable of answering direct
questions, such as "Where was Madonna born"

dbkda18

YAGO

• 10 Mega (106) concepts
– 120M facts about these entities
– Max Planc Institute, Informatik
– Accuracy of 95%

• Includes:
– Wikipedia, WordNet, GeoNames
– Links Wordnet to Wikipedia taxonomy (350K

concepts)
– Anchored in time and space

dbkda18

Wikidata

• Free knowledge base with 46,769,977
items
– 14,913,910 - 2015

• Collecting structured
data

• Properties of
– person, organization,

works, events, etc.

dbkda18

Cyc - knowledge base

• Knowledge base
– Doug Lenat
– Conceptual networks (ontologies)
– Higher ontology, basic theories, specific theories
– Predefined semantic relationships
– 500.000 terms, including about 17.000 types of

relations, and about 7.000.000 assertions relating
these terms

• Common sense reasoner
– Based on predicate calculus
– Rule-based reasoning

dbkda18

Cyc

dbkda18

Storage level

dbkda18

Outline

• Triple-store representation
– Relational representation
– Property table
– Index-based representation
– Columnar representation
– Graph-based representation

dbkda18

Relational representation

• Extending relational DBMS
– Virtuoso, Oracle ...

• Statistics does not work
– Structure of triple-store is more complex than

bare
• Extensions of relational technologies

– Adding RDF data type in SQL
– Virtuoso indexes store statistics
– Quad table is represented by two covering

indexes
• GSPO and OGPS

dbkda18

Property table

• Property table in relational DBMS
– Jena, DB2RDF, Oracle, ...

• Triples are grouped by properties
– Property table is defined for groups

• Advantages
– All properties read at once (star queries)

• Drawbacks
– Property tables can have complex schemata
– The values of some attibutes may be rare
– Sorting and clustering by S part of triples not

possible

dbkda18

Index-based representation

• Covering indexes
– RDF-3X, YAR2, 4store, Hexastore, ...

• RDF-3X (MPI, 2009)
– Compressed clustered B+-tree
– Sorted lexicographically for range scans
– Compression based on order of triples
– Aggregate indexes

• Two keys + counter
• One key + counter

Index-based representation

dbkda18

Index-based representation

• Hexastore (Uni Zuerich, 2008)
– Treats subjects, properties and objects equally
– Every possible ordering of 3 elements is

materialized
• SPO, SOP, PSO, POS, OSP, and OPS

– The result is a sextuple indexing scheme
1. All three, S|P|O-headed divisions of data
2. Each division has appropriate S|P|O vector pairs
3. Each vector pair has associated S|P|O values

dbkda18

S

Index-based representation

• Hexastore
– 3-level special index
– Appropriate for some types of joins

• Merge-joins
– Reduction of

unions and joins
– 5-fold increase

of DB size

SPO index entry

dbkda18

Columnar representation
• Vertical partitioning of RDF (Yale, 2009)

– Daniel Abadi
– Triples table is stored into n two-column tables

• n is the number of unique properties in the data

• Advantages
– reduced I/O: reading only the needed properties
– Column-oriented data compression

dbkda18

Columnar representation

– Optimizations for fixed-length tuples.
– Optimized column merge code
– Direct access to sorted files
– Column-oriented query optimizer.

• Materialized path expressions
– Direct mapping is stored instead of paths
– Can speed-up queries enormously (... is critics)

• Disadvantages
– Increased number of joins.

dbkda18

Graph-based representation

• Native graph representation
– Nodes have associated adjacency lists

• Links to nodes connected to a given node
– Subgraph matching using homomorphism

• Examples of systems
– gStore, Neo4j, Trinity.RDF

• Graph homomorphism are NP-complete
– Scalability of the approach is questionable

dbkda18

Graph-based representation

• gStore
– Works directly on the RDF graph and the SPARQL

query graph
– Use a signature-based encoding of each entity and

class vertex to speed up matching
– Filter-and-evaluate

• Use a false positive algorithm to prune nodes and obtain a set
of candidates; then do more detailed evaluation on those

– Use an index (VS*-tree) over the data signature graph
(has light maintenance load) for efficient pruning

dbkda18

Graph-based representation

dbkda18

Data distribution

dbkda18

Outline

• Triple-store distribution
– Hash horizontal partitioning
– Locality-based horizontal partitioning
– N-hop guarantee horizontal partitioning
– Semantic hash partitioning
– Semantic-aware partitioning

dbkda18

Horizontal hash partitioning

• Hash partitioning on a given key
– A key can be any subset of triple components
– Triples are distributed randomly
– Sometimes complete partitions (fragments) are

hashed
• Hash partitioning in relational systems

– Commonly used method
– Scales up to hundreds of server

• All results go to coordinator
• Network bandwidth may be a bottleneck

dbkda18

Horizontal hash partitioning

• Hash partitioning in NoSQL systems
– Fundamental method of key-value databases
– Very efficient for a simple key-value data model

• Simple data access by means of nicely defined keys
– Consistent hashing method gives very good

results
• Keys are uniformly distributed to servers
• Allows adding/removing servers in run-time

• Triple-stores are based on both
– Relational and Key-Value models

dbkda18

Horizontal hash partitioning

• Query execution model
– Basic hash partitioning

• Hash partition triples across multiple machines, and
parallelize access to these machines as much as
possible at query time

• All servers return results at the same time
– Locality preserving hash partitioning

• Triples are distributed in locality-based partitions
• Queries are split into sub-queries
• Sub-queries are executed on servers that store the

data

dbkda18

Horizontal hash partitioning

• Hash partitioning on S part of triples
– Object oriented view

• Objects are represented by groups of triples having
the same S part

• Triples representing objects are hashed into the
same node numbers

– This is random partitioning
• There are no correlations among objects mapped to

a given node number
– Systems

• SHARD, 4store, YARS2, Virtuoso, TDB, ...

dbkda18

Locality-based horizontal
partitioning

• Use of min-cut graph partitioning
– METIS algorithms are often used
– Nodes are partitioned into k partitions

• Placement of triples into partitions follows
the partitioning of nodes
– Therefore, subject-based partitioning
– Partitions are replicated as in key-value

systems to obtain better availability
– Query is posed to all servers

• Originaly proposed by
– Scalable SPARQL Querying of Large RDF

Graphs, Huang, Abadi, VLDB, 2011.

dbkda18

Locality-based horizontal
partitioning

• TriAD (MPI, 2014)
– Summary graph is computed first

• Supernodes are constructed from the data graph
– Link between supernodes if there exists a strong

connectivity between them

• Intuition: processing query on summary graph
eliminates partitions that are not addressed

• METIS algorithm is used for graph partitioning
– Locality information provided by the summary

graph leads to sharding
• Entire partitions are hashed to nodes
• Triples on the edge between two partitions are

placed in both partitions
• Join-ahead prunning of partitions

dbkda18

N-hop guarantee horizontal
partitioning

• Huang, Abadi, Ren: Scalable SPARQL Querying of
Large RDF Graphs, VLDB, 2011

• Leveraging state-of-the-art single node RDF-store
technology
– Columnar representation is used
– Careful fix-sized record implementation
– Merge-joins are optimized

• Partitioning the data across nodes
– Accelerate query processing through locality

optimizations
– Edge partitioning is used (not node partitioning)
– METIS used for min-cut vertex graph partitioning

• rdf:type triples are removed before

dbkda18

N-hop guarantee horizontal
partitioning

• Triple placement
– We have vertex based partitioning
– Simple way: use S part partition for complete triple
– Triples on the borders are replicated
– More replication results less communication
– Controlled amount of replication

• Directed n-hop guarantee
• Start with 1-hop guarantee and then proceed to 2-hop

guarantee, ...
• Partitions are extended to conform n-hop guarantee

• Decomposing SPARQL queries into high
performance fragments that take advantage of how
data is partitioned in a cluster.

dbkda18

Semantic hash partitioning

• Minimizing the amount of interpartition
coordination and data transfer
– None of the existing data partitioning techniques takes

this into account
– Kisung Lee, Ling Liu, Scaling Queries over Big RDF

Graphs with Semantic Hash Partitioning, VLDB, 2013

• Semantic hash partitioning algorithm performs
data partitioning in three main steps:
1.Building a set of triple groups which are baseline

building blocks for semantic hash partitioning.
● S, O and S+O triple groups
● Star queries can be answered fast in parallel

dbkda18

Semantic hash partitioning

2. Grouping the baseline building blocks to generate
 baseline hash partitions

● S, O, S+O -based grouping
● Hashing groups to partitions based on S|O|S+O
● Technique to bundle different triple groups into one partition

3. Generating Semantic Hash Partitions
● Mapping triple groups to baseline is simple and generates well

balanced partitions
● Poor performance for complex non-star queries.
● The hop-based triple replication was proposed for this reason.
● Semantic hash partitions are defined to maximize intra-partition

query processing.

dbkda18

Entity-class partitionig

• EAGRE (HKUST, 2013)
– Semantic-aware partitioning
– Goal is to reduce the I/O cost incurred during

query processing
• Speed-up queries with range filter expressions
• A distributed I/O scheduling solution

– Finding the data blocks most likely to contain the answers
to a query.

• Entity-based compression scheme for RDF

dbkda18

Entity-class partitionig

– Procedure
• RDF graph is transformed into an entity graph

where only nodes that have out-going edges are
kept

• Entities with similar properties are grouped together
into an entity class

• The compressed RDF graph contains only entity
classes and the connections between them
(properties)

• The global compressed entity graph is then
partitioned using METIS

dbkda18

Semantic-aware partitioning

● big3store: distributed triple-store
● In development from 2014
● Yahoo! Japan Research & University of Primorska
● Erlang programming environment

● The main idea of the method
1. Cluster the data on the schema level

● Use statistics for the estimation

2. Distribute the extensions of the schema
 partitions

dbkda18

big3store: partitioning method

1. Choose a skeleton graph from the hierarchy
 of edge types

– Edge types are ordered into partially ordered set
– Start from the top most general edge type
– Specialize edge types until they are of appropriate size

2. Cluster a skeleton graph to obtain k partitions
– Cluster strongly connected edges together
– Connectivity is defined by means of the statistics of

edge types

dbkda18

big3store: Computing skeleton
graph

... ...
... ...

...

...

Top of schema
triple hierarchy

= edges of the skeleton
 graph

(owl:Thing,rdf:Property,owl:Thing)

= “is more specific triple”

= schema triples that have
 the interpretation of
 appropriate size

= schema triple

(employee,worksAt,organization)

(person,worksAtr,organization)

(person,worksAtr,company)

(employee,worksAt,company)(engineer,worksAt,organization)

...

... ...

...

Schema graph = selected schema triples

dbkda18

big3store: Clustering skeleton
graph

4

9

10

8

3
6

7

5

2

15

11

17

16

21

1918

12

14

20

1

13

p1

p2

p3

p1

p4

p5

p5

p6

p7

p8

p9

p10

p11

p12

p13
p14

p15

p16

p17
p18

p19

p20

Given:
- statistics of TS
- skeleton graph G

s

Schema graph
- selected schema triples
- represented as graph !

Distance function:
- distance between edges e

1
and e

2

 - based on shortest path p starting with
 e

1
and ending with e

2

 - estimate the number of path p instances
 - estimate the cardinality of each join in
 a path p by using the statistics of TS

worksAt

engineer

organization

worksAt

employee

company

... ...

...

dbkda18

big3store: Clustering skeleton
graph

4

9

10

8

3
6

7

5

2

15

11

17

16

21

1918

12

14

20

1

13

p1

p2

p3

p1

p4

p5

p5

p6

p7

p8

p9

p10

p11

p12

p13
p14

p15

p16

p17
p18

p19

p20

Clustering algorithm:
- any clustering algorithm
 - strongly connected edge types
 are clustered together
 - maximize average strength of
 the paths among all different
 pairs of nodes from a partition
 (see problem definition, page 7)

Statistics:
- For each schema triple ts:
 # instances of edge type ts
 # distinct values of edge type ts
 estimation of the size of joins

Result:
- partitions of G

s
(sets of edges)

dbkda18

 big3store: Process diagram

 Compute skeleton graph

Compute TS statistics Cluster skeleton graph

dbkda18

Query processing

dbkda18

Outline

• Query processing
– Algebra of graphs

• Logical algebra
• Physical algebra

– Parallel execution of operations
– Centralized triple-store systems
– Federated centralized database systems
– State-of-the-art directions

dbkda18

RDF algebra

• select
• project
• join
• union, intersect, difference
• leftjoin

• Algebra of sets of graphs
• Sets of graphs are input and output of operations

– Triple is a very simple graph
– Graph is a set of triples

dbkda18

RDF algebra

Conditions

Triple-patterns Graph-patterns

Variables

dbkda18

Logical algebra

• Triple-pattern is access method
– tp

1
 = (?x,p,o), tp

2
 = (?x,p,?y), ...

– tp
1
retrieves all triples with given P and O

• Triple pattern syntax
– TP ::= (S | V,P | V,O | V)

• Triple-pattern semantics

dbkda18

Logical algebra
• Join operation

– Joins all graphs from outer sub-tree with
graphs from inner triple-pattern

– Common variables from outer and inner graphs
must match

• Syntax
– GP ::= ... | join(GP,GP) | ...
– Second argument is TP in

left-deep trees
• Semantics

join
GP

GP
GP

dbkda18

Logical algebra

join(join(tp(?c,<hasArea>,?a),
 tp(?c,<hasLatitude>,?l)),
 tp(?c,<hasInfration>,?i))

Operation join

Triple-pattern

 tp(?c,<hasArea>,?a)

SPARQL query language

dbkda18

Physical operations

• Access method (AM)
– Triple-pattern operation
– Includes select and project operations

• Join
– Logical join operation
– Includes select and project operations

• Union, intersect and difference
– Retain the schema of parameters

dbkda18

Physical operations

• Implementation of TP access method
– Distributed file system AM

• Read and filter appropriate file
• Vertical partitioning: predicate files are searched

– Index-based triple-store
• Key-value store:

– Direct lookup, prefix lookup and scan over table T

• Covering B+ index for the keys given in TP
– Access with ALL possible subsets of { S, P, O }

– Federated centralized systems
• Query processing pushed to data nodes

– Data nodes are centralized RDF stores (e.g., RDF-3X)

• Query is represented by a tree of processes

dbkda18

Physical operations

• Join implementation
– Index nested-loop join

• Rya (Inria, 2012)

• H
2
RDF (Uni Athens, 2012)

– Merge-join
• RDF-3X (extensively uses merge-join)
• TriAD (distributed merge-join on sharded data)
• Hexastore (merge-joins as first-step pairwise joins)

– Hash-join
• Virtuoso (almost never preferred for RDF)
• TriAD (distributed hash-join on sharded data)

– Main-memory join
• AMADA main-memory hash join (Inria, 2012)

dbkda18

Physical algebra

• Left-deep trees
– Pipelined parallelism
– Dynamic (greedy) optimization

possible

• Bushy trees
– More opportunities for

parallel execution

• Large search space
– O(n×2n) star queries, O(3n) path queries

• Cost-based static optimization
– For both cases

dbkda18

Graph patterns
• Set of triple-patterns linked by joins

– select and project packed into joins and TPs

• Graph-patterns similar to SQL blocks
– select and project pushed-down to leafs of query
– Joins can now freely shift -> Join re-ordering

• Graph-patterns are units of optimization
– Optimization can be based on dynamic programming
– Bottom-up computation of execution plans

dbkda18

Centralized systems

• Single server system
• Based on the relational database

technology
• Best of breed example:

– RDF-3X (MPI)
– Classical query optimization
– Multiple index approach

dbkda18

Example: RDF-3X

• 6 B+ tree indexes
– All interesting orders can be materialized

• Query optimization
– Join re-ordering in bushy trees

• Possible large number of joins
• Star-shaped sub-queries are the primary focus

– Cost-based query optimization
• Statistics (histograms) stored in aggregate indexes
• Plan prunning based on cost estimation (heuristics)

– Bottom-up dynamic programming algorithm
• Keeps track of a set of the plans for interesting orders
• Exhaustive use of merge-join algorithm
• Uses also a variant of hash join

dbkda18

Federated centralized database
systems

• A federated database system transparently maps
multiple autonomous database systems into a
single federated database
– Stand alone shared-nothing servers
– Typically have coordinator nodes and data nodes

• Not all nodes have the same functionality

• Examples:
– TriAD
– Huang et al.
– WARP

dbkda18

Query parallelism

• Partitioned parallelism
• Pipelined parallelism
• Independent parallelism

dbkda18

Query parallelism

• TP processing is distributed
– Data addressed by a TP is distributed
– Processing TP in parallel

• Left-deep trees form pipelines
– Each join on separate server?

• Join runs on the same machine as its inner TP

– Faster query evaluation

• Bushy trees
– Parallel execution of sub-trees and operations

• Split joins to more smaller parallel joins
– Exploiting multiple processors and cores
– Parallel execution of joins

Pipelined
parallelism

Partitioned
parallelism

Independent
parallelism

dbkda18

Example: TriAD

• Federated centralized system
– Extension of centralized RDF-3X to distributed

environment
– Based on asynchronous message passing

• Main features of TriAD
– Construction of summary graph
– Graph partitioning with METIS
– Summary graph defines data distribution
– Executing queries on summary graph (at master site)

• eliminates unneeded partitions – partition prunning

– Distribution aware query optimizer

dbkda18

Example: TriAD

• Query optimization
– Two-stage optimization algorithm deterimining

• Best exploration order for summary graph
• Best join ordering for RDF data graph

dbkda18

Example: Huang et al., 2011

• Huang, Abadi, Ren: Scalable SPARQL Querying
of Large RDF Graphs, VLDB, 2011

• Contributions
1. Leveraging state-of-the-art single node RDF-store
 technology
2. Partitioning the data across nodes in a manner that
 helps accelerate query processing through locality
 optimizations and

• METIS used for min-cut graph partitioning

3. Decomposing SPARQL queries into high performance
 fragments that take advantage of how data is
 partitioned in a cluster.

dbkda18

Example: WARP, 2013

• WARP: Workload-Aware Replication and Partitioning
for RDF, ICDE Workshop, 2013

• RDF-3X is used as the local database system
• Combines a graph partitioning technique with

workload-aware replication of triples across partitions
– Relational systems define the partitionins on the basis

of the predicates that are used in the queries
• This method has been extended to triple-stores

– METIS is used for vertex-based partitioning
• Subjects are used to assign triples to partitions

– N-hop replication can be used selectively for frequently
issued queries

• N-hop replication is defined as in Huang et al., 2011

dbkda18

State-of-the-art directions

• Data manipulation in main memory
– Huge main memory is available currently
– Most queries are executed much faster in main

• Careful construction of localized partitions
– Data that is frequently queried together is stored in one

partition
– Network communication is significantly reduced

• Utilization of the schema in triple-stores
– All novel triple-stores have rich schemata provided as

RDFS triples
– Schemata can be used for speeding up queries and for

semantic-aware partitioning

dbkda18

State-of-the-art directions

• Abstracting the data graph
– Construction of the summary graph by

• Data mining algorithms that group similarly structured sub-
graphs

• Employing graph partitioning for the construction of the
summary graphs

– Summary graph can be exploited for
• Construction of well-localized partitions
• Directing the evaluation query

• Workload-aware partitioning
– Exploiting workload for the definition of partitions
– Dynamical run-time adjustment of the partitions

dbkda18

 Thank you !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

