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Outline

• Introduction 
• Triple data model
• Storage level representations
• Data distribution 
• Query procesing
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Terminology 

• Triple-store 
• RDF database
• Graph database
• Linked data
• Linked open data
• Knowledge bases
• Knowledge graphs
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Position of triple stores

• Key-value model
• Relational data model
• Triple data model
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Key-value data model

• Simple data and query model 
– BASE (Basically Available, Soft-state, Eventual 

consistency), CAP theorem
– CRUD (Create, Read, Update, Delete)

• Automatic data distribution
– Consistent hashing, Sharding 

• Eventual consistency
– Time-stamps and vector clocks
– Distributed protocols: Gossip, Quorum 2PC
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Relational data model

• Mathematical model of relations
– Intuitive tabular representation

• Query model
– Relational algebra and calculus, SQL

• Scalability
– Round-Robin, hash, range partitioning, sharding

• Consistency
– TPC, distributed 2PC

• Avaliability, tolerance for network partitions 
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Triple data model

• Graph data model
– Baseline: graph representation
– RDFS: knowledge representation language

• Predicate calculus, description logic 

• Query model
1. Relational model + SQL

2. Key-value access + MapReduce system

3. Algebra of triples + SPARQL
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Triple data model

• Data model 
– Baseline triple model 

• More complex than KV data model

• More simple and uniform than relational model

– Triple model + RDFS 
• more expressive than relational model

• Scalability
– Automatic partitioning is possible 

• Hash partitioning, graph partitioning, sharding

• Some ideas from KV model and some from relational model
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Triple data model

• Consistency, availability, tolerance to network 
partitions, ...
– Most of the above properties are hard to achieve in 

relational model
• Consistency clashes with updates and high replication

• Availability clashes with the weak tolerance to faults

• Tolerance to network partitions would need and upgrade of 
RDBMS

– Many ideas from KV model are applicable to TDM
• Hash partitioning, eventual consistency, new storage 

systems, ...
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Triple data model 
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Graph data model 

• Graph database 
– Database that uses graphs for the 

representation of data and queries
• Vertexes 

– Represent things, persons, concepts, 
classes, ...

• Arcs 
– Represent properties, relationships, 

associations, ...
– Arcs have labels !
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RDF
• Resource Description Framework

– Tim Berners Lee, 1998, 2009 ...
– This is movement !

• What is behind ?
– Graphs are fundamental representation ?

• Can express any other data model
• Many times serve as the theoretical basis 

– Graphs can represent data and knowledge ?
• Data and knowledge will be integrated in novel 

applications
• Many reasoners use triple-representation of 

knowledge and data, e.g., Cyc
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RDF
– Novel applications require some form of 

reasoning
• Intelligent assistants, system diagnostics, ...
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RDF



RDF syntax
• N3, TVS
• Turtle
• TriG
• N-Triples
• RDF/XML
• RDF/JSON



Name spaces

• Using short names for URL-s
– Long names are tedious

• Simple but strong concept
• Defining name space:

prefix rdf:, namespace URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#

prefix rdfs:, namespace URI: http://www.w3.org/2000/01/rdf-schema#

prefix dc:, namespace URI: http://purl.org/dc/elements/1.1/

prefix owl:, namespace URI: http://www.w3.org/2002/07/owl#

prefix ex:, namespace URI: http://www.example.org/ (or http://www.example.com/)

prefix xsd:, namespace URI: http://www.w3.org/2001/XMLSchema# 



<http://example.org/bob#me> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<http://example.org/bob#me> <http://xmlns.com/foaf/0.1/knows> <http://example.org/alice#me> .
<http://example.org/bob#me> <http://schema.org/birthDate> "1990-07-04"^^<http://www.w3.org/2001/XMLSchema#date> .
<http://example.org/bob#me> <http://xmlns.com/foaf/0.1/topic_interest> <http://www.wikidata.org/entity/Q12418> .
<http://www.wikidata.org/entity/Q12418> <http://purl.org/dc/terms/title> "Mona Lisa" .
<http://www.wikidata.org/entity/Q12418> <http://purl.org/dc/terms/creator> <http://dbpedia.org/resource/Leonardo_da_Vinci> .
<http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619> <http://purl.org/dc/terms/subject> 

N-Triples

01    BASE   <http://example.org/>
02    PREFIX foaf: <http://xmlns.com/foaf/0.1/>
03    PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
04    PREFIX schema: <http://schema.org/>
05    PREFIX dcterms: <http://purl.org/dc/terms/>
06    PREFIX wd: <http://www.wikidata.org/entity/>
07 
08    <bob#me>
09        a foaf:Person ;
10        foaf:knows <alice#me> ;
11        schema:birthDate "1990-07-04"^^xsd:date ;
12        foaf:topic_interest wd:Q12418 .
13   
14    wd:Q12418
15        dcterms:title "Mona Lisa" ;
16        dcterms:creator <http://dbpedia.org/resource/Leonardo_da_Vinci> .
17  
18    <http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619>
19        dcterms:subject wd:Q12418 .

Turtle



Additional RDF Constructs

• Complex values
– Bags, lists, trees, graphs

• Empty nodes
• Types of atomic values
• Types of nodes
• Reification



RDF Schema

• RDFS
• Knowledge representation language

– Not just graph any more !
– AI Frames, Object Model

• Small dictionary for RDFS 
– rdfs:class, rdfs:subClassOf, rdfs:type
– rdfs:property, rdfs:subPropertyOf
– rdfs:domain, rdfs:range



RDFS Concepts



Classes

ex:MotorVehicle rdf:type rdfs:Class . 
ex:PassengerVehicle rdf:type rdfs:Class . 
ex:Van rdf:type rdfs:Class . 
ex:Truck rdf:type rdfs:Class . 
ex:MiniVan rdf:type rdfs:Class . 

ex:PassengerVehicle rdfs:subClassOf ex:MotorVehicle . 
ex:Van rdfs:subClassOf ex:MotorVehicle . 
ex:Truck rdfs:subClassOf ex:MotorVehicle . 

ex:MiniVan rdfs:subClassOf ex:Van . 
ex:MiniVan rdfs:subClassOf ex:PassengerVehicle . 
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SPARQL

• SPARQL Protocol and RDF Query Language

• SPARQL query
– Graph can include variables in place of constants 

• Operations
– JOIN (natural, left-join)

– AND, FILTER, UNION, OPTIONAL

• Commercial DBMS-s 
– Implement RDF and SPARQL



Example SPARQL query
 

PREFIX 

   abc: <http://mynamespace.com/exampleOntology#> 

SELECT ?capital ?country 

WHERE { ?x abc:cityname ?capital. 

        ?y abc:countryname ?country. 

        ?x abc:isCapitalOf ?y. 

        ?y abc:isInContinent abc:africa. } 

?x

?y

?capital
abc:cityname

abc:isCapitalOf

    ?country

abc:countryname

    abc:africa

abc:isInContinent



Logic - OWL

• Ontology language
– Knowledge representation + Logic

• Based on description logic
– Fragments of predicate calculus
– Hierarchy of DL languages 

• OWL reasoners
– FaCT++, HermiT, RacerPro, Pellet, ...
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Wordnet

• Princeton's large lexical database of 
English. 
– Cognitve synonims: synsets 

• 117,000 synsets
– Synsets are linked by: 

• conceptual-semantic relationships, and
• lexical relationships.
• Include definitions of synsets.

– Main relationships:
• Synonymy, hyponymy (ISA), meronymy (part-

whole), antonymy
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Linked Open Data

• Datasets are represented in RDF
– Wikipedia, Wikibooks, Geonames, 

MusicBrainz, WordNet, DBLP bibliography
• Number of triples: 33 Giga (109) (2011)
• Governments: 

– USA, UK, Japan, Austria, Belgium, France, 
Germany, ...

• Active community
– http://en.wikipedia.org/wiki/Open_Data
– http://www.w3.org/LOD
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LOD Cloud, 2018

http://en.wikipedia.org/wiki/Open_Data
http://www.w3.org/LOD
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http://lod-cloud.net/
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Open Data
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Freebase
• Free, knowledge graph: 

– people, places and things,
–  3,041,722,635 facts,  49,947,845 topics

• Semantic search engines are here !
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Freebase 
• Based on graphs:

– nodes, links, types, properties, namespaces
• Google use of Freebase

– Knowledge graph 
– Words become concepts
– Semantic questions
– Semantic associations 
– Browsing knowledge
– Knowledge engine

• Available in RDF
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Knowledge graph

• Google’s Knowledge Graph
– 70 billion facts, oct 2016
– Box to the right of search results, since 2012
– Google Assistant and Google Home voice 

queries
• Knowledge Vault, Google, 2014

– Initiative to succeed the capabilities of the 
Knowledge Graph

• … to deal with facts, automatically gathering and 
merging information from across the Internet into a 
knowledge base capable of answering direct 
questions, such as "Where was Madonna born"
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YAGO

• 10 Mega (106) concepts
– 120M facts about these entities
– Max Planc Institute, Informatik
– Accuracy of 95%

• Includes:  
– Wikipedia, WordNet, GeoNames
– Links Wordnet to Wikipedia taxonomy (350K 

concepts)
– Anchored in time and space
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Wikidata 

• Free knowledge base with 46,769,977 
items
– 14,913,910 - 2015

• Collecting structured
data

• Properties of
– person, organization,

works, events, etc.
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Cyc - knowledge base

• Knowledge base
– Doug Lenat
– Conceptual networks (ontologies)
– Higher ontology, basic theories, specific theories
– Predefined semantic relationships
– 500.000 terms, including about 17.000 types of 

relations, and about 7.000.000 assertions relating 
these terms

• Common sense reasoner
– Based on predicate calculus
– Rule-based reasoning
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Cyc
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Storage level
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Outline 

• Triple-store representation
– Relational representation
– Property table
– Index-based representation
– Columnar representation
– Graph-based representation
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Relational representation

• Extending relational DBMS
– Virtuoso, Oracle ...

• Statistics does not work
– Structure of triple-store is more complex than 

bare 
• Extensions of relational technologies

– Adding RDF data type in SQL
– Virtuoso indexes store statistics
– Quad table is represented by two covering 

indexes
• GSPO and OGPS 
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Property table

• Property table in relational DBMS 
– Jena, DB2RDF, Oracle, ...

• Triples are grouped by properties
– Property table is defined for groups

• Advantages
– All properties read at once (star queries)

• Drawbacks 
– Property tables can have complex schemata
– The values of some attibutes may be rare 
– Sorting and clustering by S part of triples not 

possible



dbkda18

Index-based representation

• Covering indexes 
– RDF-3X, YAR2, 4store, Hexastore, ...

• RDF-3X (MPI, 2009)
– Compressed clustered B+-tree
– Sorted lexicographically for range scans
– Compression based on order of triples
– Aggregate indexes

• Two keys + counter
• One key + counter

Index-based representation
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Index-based representation

• Hexastore (Uni Zuerich, 2008)
– Treats subjects, properties and objects equally
– Every possible ordering of 3 elements is 

materialized
• SPO, SOP, PSO, POS, OSP, and OPS

– The result is a sextuple indexing scheme
1. All three, S|P|O-headed divisions of data
2. Each division has appropriate S|P|O vector pairs 
3. Each vector pair has associated S|P|O values 
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S

Index-based representation

• Hexastore 
– 3-level special index 
– Appropriate for some types of joins

• Merge-joins
– Reduction of

unions and joins
– 5-fold increase

of DB size

SPO index entry



dbkda18

Columnar representation
• Vertical partitioning of RDF (Yale, 2009)

– Daniel Abadi
– Triples table is stored into n two-column tables 

• n is the number of unique properties in the data

• Advantages 
– reduced I/O: reading only the needed properties
– Column-oriented data compression
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Columnar representation

– Optimizations for fixed-length tuples.
– Optimized column merge code
– Direct access to sorted files
– Column-oriented query optimizer.

• Materialized path expressions
– Direct mapping is stored instead of paths
– Can speed-up queries enormously (... is critics)

• Disadvantages
– Increased number of joins.
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Graph-based representation

• Native graph representation
– Nodes have associated adjacency lists

• Links to nodes connected to a given node
– Subgraph matching using homomorphism

• Examples of systems
– gStore, Neo4j, Trinity.RDF

• Graph homomorphism are NP-complete
– Scalability of the approach is questionable
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Graph-based representation

• gStore
– Works directly on the RDF graph and the SPARQL 

query graph
– Use a signature-based encoding of each entity and 

class vertex to speed up matching
– Filter-and-evaluate

• Use a false positive algorithm to prune nodes and obtain a set 
of candidates; then do more detailed evaluation on those

– Use an index (VS*-tree) over the data signature graph 
(has light maintenance load) for efficient pruning
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Graph-based representation
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Data distribution
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Outline 

• Triple-store distribution
– Hash horizontal partitioning 
– Locality-based horizontal partitioning
– N-hop guarantee horizontal partitioning 
– Semantic hash partitioning
– Semantic-aware partitioning
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Horizontal hash partitioning

• Hash partitioning on a given key
– A key can be any subset of triple components
– Triples are distributed randomly 
– Sometimes complete partitions (fragments) are 

hashed
• Hash partitioning in relational systems 

– Commonly used method 
– Scales up to hundreds of server

• All results go to coordinator
• Network bandwidth may be a bottleneck
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Horizontal hash partitioning

• Hash partitioning in NoSQL systems
– Fundamental method of key-value databases
– Very efficient for a simple key-value data model

• Simple data access by means of nicely defined keys
– Consistent hashing method gives very good 

results
• Keys are uniformly distributed to servers
• Allows adding/removing servers in run-time

• Triple-stores are based on both
– Relational and Key-Value models
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Horizontal hash partitioning

• Query execution model
– Basic hash partitioning

• Hash partition triples across multiple machines, and 
parallelize access to these machines as much as 
possible at query time

• All servers return results at the same time
– Locality preserving hash partitioning

• Triples are distributed in locality-based partitions
• Queries are split into sub-queries 
• Sub-queries are executed on servers that store the 

data
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Horizontal hash partitioning

• Hash partitioning on S part of triples
– Object oriented view 

• Objects are represented by groups of triples having 
the same S part 

• Triples representing objects are hashed into the 
same node numbers

– This is random partitioning
• There are no correlations among objects mapped to 

a given node number
– Systems

• SHARD, 4store, YARS2, Virtuoso, TDB, ...
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Locality-based horizontal 
partitioning

• Use of min-cut graph partitioning
– METIS algorithms are often used
– Nodes are partitioned into k partitions

• Placement of triples into partitions follows 
the partitioning of nodes
– Therefore, subject-based partitioning
– Partitions are replicated as in key-value 

systems to obtain better availability
– Query is posed to all servers

• Originaly proposed by
– Scalable SPARQL Querying of Large RDF 

Graphs, Huang, Abadi, VLDB, 2011.
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Locality-based horizontal 
partitioning

• TriAD (MPI, 2014)
– Summary graph is computed first

• Supernodes are constructed from the data graph
– Link between supernodes if there exists a strong 

connectivity between them

• Intuition: processing query on summary graph 
eliminates partitions that are not addressed

• METIS algorithm is used for graph partitioning
– Locality information provided by the summary 

graph leads to sharding
• Entire partitions are hashed to nodes
• Triples on the edge between two partitions are 

placed in both partitions
• Join-ahead prunning of partitions
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N-hop guarantee horizontal 
partitioning

• Huang, Abadi, Ren: Scalable SPARQL Querying of 
Large RDF Graphs, VLDB, 2011

• Leveraging state-of-the-art single node RDF-store       
technology 
– Columnar representation is used 
– Careful fix-sized record implementation
– Merge-joins are optimized 

• Partitioning the data across nodes 
– Accelerate query processing through locality 

optimizations
– Edge partitioning is used (not node partitioning) 
– METIS used for min-cut vertex graph partitioning

• rdf:type triples are removed before 
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N-hop guarantee horizontal 
partitioning

• Triple placement
– We have vertex based partitioning
– Simple way: use S part partition for complete triple
– Triples on the borders are replicated
– More replication results less communication
– Controlled amount of replication

• Directed n-hop guarantee
• Start with 1-hop guarantee and then proceed to 2-hop 

guarantee, ...
• Partitions are extended to conform n-hop guarantee

• Decomposing SPARQL queries into high 
performance fragments that take advantage of how 
data is partitioned in a cluster.
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Semantic hash partitioning

• Minimizing the amount of interpartition 
coordination and data transfer 
– None of the existing data partitioning techniques takes 

this into account
– Kisung Lee, Ling Liu, Scaling Queries over Big RDF 

Graphs with Semantic Hash Partitioning, VLDB, 2013 

• Semantic hash partitioning algorithm performs 
data partitioning in three main steps: 
1.Building a set of triple groups which are baseline 

building blocks for semantic hash partitioning. 
● S, O and S+O triple groups
● Star queries can be answered fast in parallel
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Semantic hash partitioning

2. Grouping the baseline building blocks to generate         
     baseline hash partitions

● S, O, S+O -based grouping
● Hashing groups to partitions based on S|O|S+O
● Technique to bundle different triple groups into one partition

3. Generating Semantic Hash Partitions
● Mapping triple groups to baseline is simple and generates well 

balanced partitions
● Poor performance for complex non-star queries.
● The hop-based triple replication was proposed for this reason. 
● Semantic hash partitions are defined to maximize intra-partition 

query processing.
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Entity-class partitionig

• EAGRE (HKUST, 2013)
– Semantic-aware partitioning
– Goal is to reduce the I/O cost incurred during 

query processing
• Speed-up queries with range filter expressions 
• A distributed I/O scheduling solution 

– Finding the data blocks most likely to contain the answers 
to a query.

• Entity-based compression scheme for RDF



dbkda18

Entity-class partitionig

– Procedure 
• RDF graph is transformed into an entity graph 

where only nodes that have out-going edges are 
kept

• Entities with similar properties are grouped together 
into an entity class

• The compressed RDF graph contains only entity 
classes and the connections between them 
(properties)

• The global compressed entity graph is then 
partitioned using METIS
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Semantic-aware partitioning

● big3store: distributed triple-store
● In development from 2014
● Yahoo! Japan Research & University of Primorska
● Erlang programming environment

● The main idea of the method
1. Cluster the data on the schema level

● Use statistics for the estimation

2. Distribute the extensions of the schema            
    partitions
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big3store: partitioning method

1. Choose a skeleton graph from the hierarchy 
    of edge types 

– Edge types are ordered into partially ordered set 
– Start from the top most general edge type
– Specialize edge types until they are of appropriate size

2. Cluster a skeleton graph to obtain k partitions 
– Cluster strongly connected edges together
– Connectivity is defined by means of the statistics of 

edge types
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big3store: Computing skeleton 
graph

... ...
... ...

...

... ...... ... ... ... ...

Top of schema 
triple hierarchy

= edges of the skeleton 
   graph

(owl:Thing,rdf:Property,owl:Thing)

= “is more specific triple”

= schema triples that have 
   the interpretation of 
   appropriate size

= schema triple

(employee,worksAt,organization)

(person,worksAtr,organization)

(person,worksAtr,company)

(employee,worksAt,company)(engineer,worksAt,organization)

...

... ...

...

Schema graph = selected schema triples 



dbkda18

big3store: Clustering skeleton 
graph
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Given:
- statistics of TS
- skeleton graph G

s

Schema graph
- selected schema triples
- represented as graph !

Distance function:
- distance between edges e

1
and e

2
 

   - based on shortest path p starting with 
     e

1
and ending with e

2
 

   - estimate the number of path p instances
   - estimate the cardinality of each join in 
     a path p by using the statistics of TS

worksAt

engineer

organization

worksAt

employee

company

... ...

...
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big3store: Clustering skeleton 
graph

4

9

10

8

3
6

7

5

2

15

11

17

16

21

1918

12

14

20

1

13

p1

p2

p3

p1

p4

p5

p5

p6

p7

p8

p9

p10

p11

p12

p13
p14

p15

p16

p17
p18

p19

p20

Clustering algorithm:
- any clustering algorithm
   - strongly connected edge types
     are clustered together
  - maximize average strength of 
     the paths among all different 
     pairs of nodes from a partition
     (see problem definition, page 7)

Statistics:
- For each schema triple ts:
   # instances of edge type ts
   # distinct values of edge type ts
   estimation of the size of joins

Result:
- partitions of G

s 
(sets of edges)
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  big3store: Process diagram

         Compute skeleton graph

Compute TS statistics Cluster skeleton graph
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Query processing
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Outline

• Query processing 
– Algebra of graphs

• Logical algebra
• Physical algebra

– Parallel execution of operations
– Centralized triple-store systems
– Federated centralized database systems
– State-of-the-art directions
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RDF algebra

• select
• project
• join
• union, intersect, difference
• leftjoin

• Algebra of sets of graphs
• Sets of graphs are input and output of operations

– Triple is a very simple graph
– Graph is a set of triples
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RDF algebra

Conditions

Triple-patterns Graph-patterns

Variables
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Logical algebra

• Triple-pattern is access method
– tp

1
 = (?x,p,o), tp

2
 = (?x,p,?y), ...

– tp
1 
retrieves all triples with given P and O

• Triple pattern syntax
– TP ::= (S | V,P | V,O | V)

• Triple-pattern semantics
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Logical algebra
• Join operation

– Joins all graphs from outer sub-tree with 
graphs from inner triple-pattern

– Common variables from outer and inner graphs 
must match

• Syntax 
– GP ::= ... | join(GP,GP) | ...
– Second argument is TP in 

left-deep trees
• Semantics

join
GP

GP
GP
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Logical algebra

join( join( tp(?c,<hasArea>,?a),
                tp(?c,<hasLatitude>,?l)),
        tp(?c,<hasInfration>,?i))

Operation join

Triple-pattern 

 tp(?c,<hasArea>,?a) 

SPARQL query language



dbkda18

Physical operations

• Access method (AM)
– Triple-pattern operation 
– Includes select and project operations

• Join
– Logical join operation 
– Includes select and project operations

• Union, intersect and difference
– Retain the schema of parameters
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Physical operations

• Implementation of TP access method
– Distributed file system AM 

• Read and filter appropriate file
• Vertical partitioning: predicate files are searched

– Index-based triple-store
• Key-value store: 

– Direct lookup, prefix lookup and scan over table T 

• Covering B+ index for the keys given in TP
– Access with ALL possible subsets of { S, P, O } 

– Federated centralized systems
• Query processing pushed to data nodes

– Data nodes are centralized RDF stores (e.g., RDF-3X)

• Query is represented by a tree of processes
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Physical operations

• Join implementation
– Index nested-loop join

• Rya (Inria, 2012)

• H
2
RDF (Uni Athens, 2012)

– Merge-join
• RDF-3X (extensively uses merge-join)
• TriAD (distributed merge-join on sharded data)
• Hexastore (merge-joins as first-step pairwise joins)

– Hash-join
• Virtuoso (almost never preferred for RDF)
• TriAD (distributed hash-join on sharded data)

– Main-memory join
• AMADA main-memory hash join (Inria, 2012)
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Physical algebra

• Left-deep trees
– Pipelined parallelism
– Dynamic (greedy) optimization 

possible 

• Bushy trees 
– More opportunities for 

parallel execution

• Large search space
– O(n×2n) star queries, O(3n) path queries

• Cost-based static optimization 
– For both cases
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Graph patterns 
• Set of triple-patterns linked by joins

– select and project packed into joins and TPs

• Graph-patterns similar to SQL blocks
– select and project pushed-down to leafs of query 
– Joins can now freely shift -> Join re-ordering

• Graph-patterns are units of optimization
– Optimization can be based on dynamic programming 
– Bottom-up computation of execution plans
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Centralized systems

• Single server system 
• Based on the relational database 

technology
• Best of breed example:

– RDF-3X (MPI)
– Classical query optimization
– Multiple index approach
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Example: RDF-3X

• 6 B+ tree indexes 
– All interesting orders can be materialized

• Query optimization
– Join re-ordering in bushy trees

• Possible large number of joins
• Star-shaped sub-queries are the primary focus

– Cost-based query optimization
• Statistics (histograms) stored in aggregate indexes
• Plan prunning based on cost estimation (heuristics)

– Bottom-up dynamic programming algorithm
• Keeps track of a set of the plans for interesting orders 
• Exhaustive use of merge-join algorithm
• Uses also a variant of hash join
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Federated centralized database 
systems

• A federated database system transparently maps 
multiple autonomous database systems into a 
single federated database
– Stand alone shared-nothing servers
– Typically have coordinator nodes and data nodes

• Not all nodes have the same functionality

• Examples:
– TriAD
– Huang et al.
– WARP
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Query parallelism

• Partitioned parallelism 
• Pipelined parallelism
• Independent parallelism



dbkda18

Query parallelism

• TP processing is distributed 
– Data addressed by a TP is distributed 
– Processing TP in parallel 

• Left-deep trees form pipelines 
– Each join on separate server?

• Join runs on the same machine as its inner TP

– Faster query evaluation

• Bushy trees
– Parallel execution of sub-trees and operations

• Split joins to more smaller parallel joins 
– Exploiting multiple processors and cores
– Parallel execution of joins

Pipelined
parallelism

Partitioned
parallelism

Independent
parallelism
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Example: TriAD

• Federated centralized system
– Extension of centralized RDF-3X to distributed 

environment
– Based on asynchronous message passing

• Main features of TriAD
– Construction of summary graph
– Graph partitioning with METIS
– Summary graph defines data distribution
– Executing queries on summary graph (at master site)

• eliminates unneeded partitions – partition prunning

– Distribution aware query optimizer
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Example: TriAD

• Query optimization
– Two-stage optimization algorithm deterimining 

• Best exploration order for summary graph
• Best join ordering for RDF data graph
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Example: Huang et al., 2011

• Huang, Abadi, Ren: Scalable SPARQL Querying 
of Large RDF Graphs, VLDB, 2011

• Contributions
1. Leveraging state-of-the-art single node RDF-store          
    technology 
2. Partitioning the data across nodes in a manner that        
    helps accelerate query processing through locality          
    optimizations and 

• METIS used for min-cut graph partitioning

3. Decomposing SPARQL queries into high performance   
    fragments that take advantage of how data is                  
    partitioned in a cluster.
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Example: WARP, 2013

• WARP: Workload-Aware Replication and Partitioning 
for RDF, ICDE Workshop, 2013

• RDF-3X is used as the local database system
• Combines a graph partitioning technique with 

workload-aware replication of triples across partitions
– Relational systems define the partitionins on the basis 

of the predicates that are used in the queries
• This method has been extended to triple-stores

– METIS is used for vertex-based partitioning
• Subjects are used to assign triples to partitions

– N-hop replication can be used selectively for frequently 
issued queries

• N-hop replication is defined as in Huang et al., 2011
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State-of-the-art directions

• Data manipulation in main memory
– Huge main memory is available currently
– Most queries are executed much faster in main 

• Careful construction of localized partitions
– Data that is frequently queried together is stored in one 

partition 
– Network communication is significantly reduced

• Utilization of the schema in triple-stores
– All novel triple-stores have rich schemata provided as 

RDFS triples
– Schemata can be used for speeding up queries and for 

semantic-aware partitioning
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State-of-the-art directions

• Abstracting the data graph 
– Construction of the summary graph by 

• Data mining algorithms that group similarly structured sub-
graphs

• Employing graph partitioning for the construction of the 
summary graphs

– Summary graph can be exploited for 
• Construction of well-localized partitions 
• Directing the evaluation query

• Workload-aware partitioning 
– Exploiting workload for the definition of partitions
– Dynamical run-time adjustment of the partitions 
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                         Thank you !
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