
ADASERC: Advanced Analysis of Service Compositions

Special Session at SERVICE COMPUTATION 2017
The Ninth International Conferences on Advanced Service Computing

February 19 - 23, 2017 - Athens, Greece

Thomas M. Prinz
Course Evaluation Service

Friedrich Schiller University Jena, Germany
e-mail: Thomas.Prinz@uni-jena.de

Abstract—The paradigm of service-oriented programming
breaks through the practically proven lifecycle of programming
paradigms. While the history of those paradigms shows that it
is necessary to provide a programming language fundamentally
based on the concepts of the new paradigm, such a complete
and accepted language is missing in the context of service-
orientation. However, we need such a language to build
compilers, algorithms, and analyses, subsequently, to support
the development and to avoid failures as early as possible.
A service-oriented programming language should be able to
distribute objects and functionality along a network but, simul-
taneously, it should hide that complexity from the developer.
It also should allow for external and asynchronous service
calls without breaking a well-structured program code. Those
and further fundamental basics arise when scratching the
surface of the service-oriented paradigm. Therefore, currently
existing service compositions and systems should be analyzed
to extract the requirements for a service-oriented programming
language. Based on those requirements such a language can be
implemented and, for this, support can be developed. A special
track on Advanced Analysis of Service Compositions was held
as part of the SERVICE COMPUTATION 2017 conference in
Athens, Greece, in which such analysis results were provided
and considered.

Keywords–Analysis, service, composition, programming, lan-
guage.

I. INTRODUCTION
Regarding the history of programming paradigms in

computer science, new programming paradigms seem to
always have a similar lifecycle based on five steps explained
in the following. At first, (1) a new paradigm evolves evo-
lutionary from an existing ancestor programming paradigm.
For example, the paradigm of object-oriented programming
is based on concepts of procedural programming languages
and it is, therefore, its evolutionary successor (cf. the history
of programming languages as a graph [1]).

After this birth of a new programming paradigm, (2)
either existing languages are extended to fit the new concepts
or completely new languages appear. Such new program-
ming languages support the new paradigm per design. As
existing programming languages change and new languages
are born, (3) new compilers have to arise to translate the
programs written in those languages to (virtual) machine-
understandable code. It is common to transform concepts of
a new paradigm to concepts of its ancestors. For example,
most object-oriented programming languages will be trans-

formed to procedural-like code which is then translated to an
assembler language. This makes it possible to reuse existing
compilers and compiler algorithms.

In these years of increasing compiler technology, (4) first
programs are built with the new techniques followed by
medium-sized software and ending in very complex systems.
Although new programming paradigms facilitate writing
good code and implementing large, well thought-out systems
in many cases, a great deal of failures appear during runtime
and cause high costs. For this reason, eventually, (5) the tool
support for the development of applications with the new
paradigm increases. This tool support includes methodical
approaches (like class diagrams for object-oriented program-
ming languages) as well as practical theories like integrated
development environments (IDEs) with their immediate and
detailed failure feedback.

“Those who cannot remember the past are condemned
to repeat it.” [2, p. 284] This quote of the philosopher
Santayana should to remind us to consider the history to
avoid failures of the past in the future. However, the evo-
lution of the service-oriented programming paradigm seems
not to pass the same established lifecycle like many other
programming paradigms before. Although this paradigm
must go through the first step of evolutionary emergence,
there is no established new programming language, which is
fundamentally based on the concepts of the service-oriented
programming paradigm.

The Web Service Business Process Execution Language
(WS-BPEL) [3] was a first step to a real service-oriented
programming language. However, with its XML syntax, it
was decreased to a hard to implement standard never getting
the full support of other programming languages. If we
compare the trend for WS-BPEL with the trend of other me-
thodical service-oriented languages like the Business Process
Model and Notation (BPMN) [4], WS-BPEL has a sinking
priority in the last four years [5]. Though BPMN was created
to describe abstract language business processes, its syntax
cannot be seen as a complete programming language.

Since this important step, the extension of existing or
the arising of new programming languages based on the
concepts of the service-oriented paradigm, is not finished
yet, the further steps of the lifecycle cannot be started
successfully. For this reason, up to now, the service-
oriented paradigm is implemented only by frameworks or



workarounds in existing programming languages. For ex-
ample, ECMAScript [6] is able to call services and to order
them in a workflow. But the service-oriented paradigm asks
for service orchestration, service composition, and service
selection. So, the implemented service-oriented paradigm
today is a shadow of its possibilities.

II. PROGRAMMING LANGUAGE AND ENVIRONMENT
In prior work [7], we have considered a service-oriented

program, i.e., a service composition, and what we need to
execute it. The resulting approach is an environment divided
into three parts: (1) The producer side is the development
part of the system consisting of the service-oriented pro-
gramming language and a compiler, which transforms the
entire program into an intermediate representation (IR, vir-
tual machine code) and performs some analyses [8]. After its
compilation, (2) the IR is stored within a service repository
being a file system in the simplest case or a service man-
agement system including service discovery, etc. Eventually,
on the consumer side, a distributed virtual machine takes
the IR from the service repository and executes it [9]. The
implementation of such an environment is possible, when
a programming language arises containing the fundamental
concepts of the service-oriented paradigm.

At that time, we think, it is absolutely vital to analyze
existing service compositions and to extract the basic re-
quirements on design, syntax, and functionality of service-
oriented programming languages. Fundamental concepts like
distributed information, external and asynchronous service
calls as well as workflows should be considered, naturally.
However, there are some more basics to think about, which
are not in the focus of research, for example: How should we
define the scope of a variable or document within a parallel
and asynchronous workflow? How can we hide distributed
information from the developer? How can we guarantee
the integrity of information? Or in one question: How
should we develop a software with a single programming
language, while the software can be distributed with all of
its information in a network or the world wide web? What
should it look like?

As we see, there are fundamental questions which arise
when we scratch the surface of service-oriented program-
ming languages. We need advanced analyses of service
compositions.

III. FIRST STEPS
In a special track on Advanced Analysis of Service

Compositions, which was held as part of the SERVICE
COMPUTATION 2017 conference in Athens, Greece [10],
first steps towards advanced analyses were considered. The
special track got two contributions presenting the need and
application for such analyses.

Baumann, Eichhoff, and Roller [11] provide a service
composition strategy, which enables the automatic selec-
tion of cloud 3D-printers based on certain properties. The
selection and composition of 3D-printers seems to be a
hard and challenging task since there are a lot of different
properties, technologies, etc. to consider. As a solution,
the authors propose an ontology to collect the domain-
specific knowledge. Within the contribution, this ontology

is explained. For this, they analyzed the requirements of
3D-printers as well as the service compositions and evolved
a composition framework. It would be interesting to extract
the fundamental concepts in the context of a general service-
oriented programming language.

The second contribution by Prinz and Amme [12] ex-
plains the necessity to explore algorithms and analyses for
service compositions to be used later in an IDE. In this
context, they show in a case study that the application of
accurate analysis techniques considering runtime failures is
not suitable for IDEs since accurate analysis techniques
result in an inaccurate finding of the roots of failures. It
sounds like a paradoxon, but traditional static compiler
analysis, which consider the program structure and derive
abstract information from the program, provide more precise
diagnostic information to repair malformed programs.

REFERENCES
[1] Éric Lévénez, “Computer Languages History,” website, visited on

January 31th, 2017. [Online]. Available: https://www.levenez.com/
lang/

[2] G. Santayana, Reason in Common Sense, ser. The Life of Reason:
The Phases of Human Progress. New York: Charles Scribner’s Sons,
Feb. 1906, vol. 1.

[3] M. B. Juric, B. K. Mathew, and P. Sarang, Business Process Exe-
cution Language for Web Services: An Architects and Developers
Guide to BPEL and BPEL4WS, second edition ed., ser. From Tech-
nologies to Solutions, M. Little and D. Shaffer, Eds. Birmingham,
UK: Packt Publishing Ltd., Jan. 2006.

[4] Object Management Group (OMG), “Business Process Model
and Notation (BPMN) Version 2.0,” OMG, Jan. 2011, standard.
[Online]. Available: http://www.omg.org/spec/BPMN/2.0

[5] Google Trends, “BPEL, BPMN - Explore - Google Trends,”
website, visited on January 31th, 2017. [Online]. Available:
https://www.google.com/trends/explore?q=BPEL,BPMN

[6] ecma International, “Computer Languages History,” ecma
International, Jun. 2016, standard. [Online]. Available:
http://www.ecma-international.org/ecma-262/7.0/index.html

[7] T. M. Prinz, T. S. Heinze, W. Amme, J. Kretzschmar, and C. Beck-
stein, “Towards a Compiler for Business Processes - A Research
Agenda,” in SERVICE COMPUTATION 2015: The Seventh Inter-
national Conferences on Advanced Service Computing, pp. 49–54.

[8] T. M. Prinz, R. Charrondière, and W. Amme, “Business Pro-
cesses Compiled — Necessary Support for their Development
(Geschäftsprozesse kompiliert - Wichtige Unterstützung für die Mod-
ellierung),” in Proceedings 18. Kolloquium Programmiersprachen
und Grundlagen der Programmierung, KPS 2015, Pörtschach am
Wörthersee, Austria, pp. 476–491.

[9] T. M. Prinz, “Proposals for a Virtual Machine for Business
Processes,” in Proceedings of the 7th Central European Workshop
on Services and their Composition, ZEUS 2015, Jena, Germany,
February 19-20, 2015., pp. 10–17.

[10] International Academy, Research, and Industry Association (IARIA),
“SERVICE COMPUTATION,” website, visited on February 1th,
2017. [Online]. Available: https://www.iaria.org/conferences2017/
SERVICECOMPUTATION17.html

[11] F. W. Baumann, J. R. Eichhoff, and D. Roller, “Resource Description
for Additive Manufacturing — Supporting Scheduling and Provision-
ing,” in SERVICE COMPUTATION 2017: The Ninth International
Conferences on Advanced Service Computing, to be published.

[12] T. M. Prinz and W. Amme, “Why We Need Advanced Analyses of
Service Compositions,” in SERVICE COMPUTATION 2017: The
Ninth International Conferences on Advanced Service Computing,
to be published.


