

# Keynote Industry 4.0

ICNS 2016 Steffen G. Scholz

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association



#### **Fourth Industrial Revolution**









#### The Internet of Thing



We define the internet of things as sensors and actuators connected by networks to computing systems. These systems can monitor or manage the health and actions of connected objects and machines. Conneted sensors can also monitor the natural worls, people and animals.

McKinsey Global Institut







![](_page_9_Picture_0.jpeg)

#### Industry: the biggest market for the IoT

#### Exhibit E3

Potential economic impact of IoT in 2025, including consumer surplus, is \$3.9 trillion to \$11.1 trillion

|                        | Size in 2025'<br>5 billion, adjusted to 2015 dollars<br>Total = \$3.9 trillion-11.1 trillion<br>170-<br>1,590 |               | Low estimate High estimate Major applications Monitoring and managing illness, improving wellness                          |
|------------------------|---------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------|
| Settings               |                                                                                                               |               |                                                                                                                            |
| □_' •))) Human         |                                                                                                               |               |                                                                                                                            |
| Home                   | 200-<br>350                                                                                                   |               | Energy management, safety and security,<br>chore automation, usage-based design of<br>appliances                           |
| Retail<br>environments | 410-<br>1,160                                                                                                 |               | Automated checkout, layout optimization,<br>smart CRM, in-store personalized<br>promotions, inventory shrinkage prevention |
| -21 Offices            | 70-<br>150                                                                                                    |               | Organizational redesign and worker<br>monitoring, augmented reality for training,<br>energy monitoring, building security  |
| Factories              |                                                                                                               | 1,210-3,700   | Operations optimization, predictive<br>maintenance, inventory optimization, health<br>and safety                           |
| Worksites              | 160<br>930                                                                                                    |               | Operations optimization, equipment<br>maintenance, health and safety, IoT-<br>enabled R&D                                  |
| Vehicles               | 210-<br>740                                                                                                   |               | Condition-based maintenance, reduced<br>insurance                                                                          |
| Cities                 |                                                                                                               | 930-<br>1,660 | Public safety and health, traffic control,<br>resource management                                                          |
| utside                 | 560<br>850                                                                                                    |               | Logistics routing, autonomous cars and trucks, navigation                                                                  |

NOTE: Numbers may not sum due to rounding.

SOURCE: McKinsey Global Institute analysis

![](_page_10_Figure_0.jpeg)

![](_page_11_Picture_0.jpeg)

## **Opportunities and Challenges**

## Industry 4.0 will bring

![](_page_12_Picture_1.jpeg)

- New business models
- Energy saving
- Better maintenance
- Worker health and safety
- Inventory optimization (know at anytime the number of part, supply chain management; ex: How many screws are still in the box)

#### The technologies Used by the Internet of thing

![](_page_13_Picture_1.jpeg)

#### MEMS

**RFID** (Track the product, product memory)

![](_page_13_Picture_4.jpeg)

Always cheaper, smaller and more powerful computation capacity.

Although the price of the technologies driving I4.0 has dropped, it still needs to be cheaper to make the new industrial revolution fully happening.

## Changes in the way of working

![](_page_14_Picture_1.jpeg)

![](_page_14_Figure_2.jpeg)

## Changes in the way of working

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

## Observation

![](_page_16_Picture_1.jpeg)

- Productivity stop to progress in the past years. It seems that flexibility, productivity and quality are three mutually exclusive options. If one wants to improve one of them, one has to sacrifice one of the other.
- Þ There is a need for a need paradigm
- Need for Fast (highly automated lines producing a large number of products), flexible (short lead time, small batch size), efficient (high quality and low defect rate) factory.

#### New paradigm

![](_page_17_Picture_1.jpeg)

How to compute the enormous quantity of data comming from sensors and convert it in value creation?

![](_page_17_Figure_3.jpeg)

![](_page_18_Picture_0.jpeg)

## **Examples**

#### **Concept of the bosch tightening tool**

![](_page_19_Picture_1.jpeg)

Smart tightening tool couple with real-time 3D Indoor localisation: Allow to know what has happened at any time and any place on the production line. If a problem occurs (series of product are defect), the data from the production tool can be analysed and the problem identified. Instead of recalling thousands of products only few with actual default could be recall.

![](_page_19_Picture_3.jpeg)

### **3D printed connected HP chain link**

In situ measurement available during operation

Future of HP Multi Jet Fusion: Embedded intelligence

Reports the state of the part under operating conditions

![](_page_20_Picture_4.jpeg)

![](_page_20_Picture_5.jpeg)

![](_page_20_Picture_6.jpeg)

#### **SMARTLAM:** Modularity concept

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

#### Smartlam 6 modules

- Lamination
- Laser welding
- Laser structuring
- Printing module (aerosoljet printing)
- Assembly
- Inspection

![](_page_21_Picture_10.jpeg)

# 

**Applications** 

Towards Next Generation

Complex in geometry

Micro sized with nano

micro products that are:

Three dimensional

Multi-Material

features

#### **Targets**

#### **RTD**

- Capability to rapidly produce complex 3D meachatronic micro systems
- Increased flexibility and scalability of processes
- Reduced energy consumption
- Reduction of development and sale up time
- Product quality improvement
- Waste reduction and reduced impact on the environment

![](_page_22_Picture_9.jpeg)

**3D-I** Modelling & design approach

![](_page_22_Picture_11.jpeg)

**3D-I** compatible production platform

![](_page_22_Picture_13.jpeg)

**SMARTLAM** adaptive control and vision inspection

![](_page_22_Picture_15.jpeg)

![](_page_22_Picture_16.jpeg)

![](_page_22_Picture_17.jpeg)

![](_page_22_Picture_18.jpeg)

Micro laser Polymers with cutting, milling, advanced welding, properties sintering

![](_page_22_Picture_20.jpeg)

•

Consumer (sensor, user interfaces)

![](_page_22_Picture_22.jpeg)

![](_page_22_Picture_23.jpeg)

Energy (e.g. Energy harvester, printed batteries, organic PV)

![](_page_22_Picture_25.jpeg)

![](_page_23_Figure_0.jpeg)

## DLED Lighting - APPLICATION

![](_page_24_Picture_1.jpeg)

- Light source embedded into surgical instrument
- Product includes 1. planar light-guide LED chip source, electronic control, switch and power source
- Sealed and to have high hermiticity for medical accreditation.
- Custom size and light specifications for different surgical procedures
- Specification will evolve over time
- Disposable
- Cost/volume critical e.g. Veterinary market

![](_page_24_Picture_9.jpeg)

# Microchips electrophoresis with electrochemical detection

![](_page_25_Picture_1.jpeg)

#### PATENT:

Application number: 200802006, Publication number: ES 2 320 619 (B1), Priority data: 30/06/08

A. Costa-García, M.T. Fernández-Abedul, M. Castaño-Álvarez, A. Fernández-la-Villa, D.F. Pozo-Ayuso. "Microchips capillary

electrophoresis of resin EPON SU-8 with integrated electrochemical detection",

![](_page_25_Figure_6.jpeg)

![](_page_25_Picture_7.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_27_Picture_0.jpeg)

## **The Future**

### Gatner Hype-Cycle

![](_page_28_Picture_1.jpeg)

- In order to fully implement I4.0 all stakeholders (component suppliers, equipment manufacturers, factory operators, OEMs, users,...) should adopt it.
- Companies have to adapt (change business model) fast or may die.

![](_page_28_Figure_4.jpeg)

![](_page_29_Picture_0.jpeg)

#### Thanks a lot...