

The long road of Quantum Computing

Thierry Ferrus

Hitachi Cambridge Laboratory

Tutorial

© Hitachi, Ltd. 2015. All rights reserved.

Outline

Evolution of thoughts : from corpuscles to quantum world

Quantum Information and Quantum Computers

Various implementations : present status

Future challenges

Conclusions

Max Planck and the black body radiation

Colour changes with temperature

Temperature T et frequency v?

Thermal radiation and oscillators in equilibrium :

$$E = n h v \propto 1/\lambda$$

HITACHI Inspire the Next

© Hitachi, Ltd. 2015. All rights reserved.

Evolution of thoughts : from corpuscles to quantum world

Albert Einstein : the photoelectric effect

Generalisation to light

Photovoltaic and photoelectric effects

- Contradicts the 2nd law of thermodynamics Entropy
 - $\phi = hv = work function$

Bohr : atomic model

Failure of Rutherford's model

Atomic level quantisation

Emission spectrum of hydrogen :

- Discreet frequencies (series)
- Hot gas emits photons (astrophysics)

Young slits

Generalisation to particles (γ, e-)

Constructive and destructive interferences

Wave-corpuscle duality

Erwin Schrödinger

Atoms are waves, their states are wavefunctions

$$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \left[\frac{-\hbar^2}{2\mu}\nabla^2 + V(\mathbf{r},t)\right]\Psi(\mathbf{r},t)$$

Probability (t, r)

$$|\Psi(x,t)|^2 = \rho(x,t)$$

Copenhague interpretation

- A system is described by a wavefunction
- The wavefunction is described by the Schrödinger's equation
- One can only measure a probability
- Uncertainty principle : $\Delta x \cdot \Delta p_x \ge \frac{\hbar}{2}$ $\Delta E \Delta t \ge \frac{\hbar}{2}$
- Matter is both corpuscles and waves (experiments)
- Quantum aspect disappears with size ???? (dipole interaction)

Quantum entanglement

- Pauli exclusion principle : not 2 e- in the same state
- Quantum superposition :

• {
$$\Psi_1$$
, Ψ_2 } \rightarrow | Ψ_{1+2} > = α | Ψ_1 > + β | Ψ_2 >

• $\alpha^2 + \beta^2 = 1$ H₂ molecule: bonding / antibonding 0 > 6

- Radioactive disintegration decides on the cat's fate
- Notion of observation :
 - Interaction with classical world
 - Projective measurement on eigenstate
 - Collapse of the wavefunction
- Realism, complexity of QM
- Coherence (T_2) , many worlds

Weak measurements (! Dispute !)

- How to measure without destroying ?
- Weak interaction between quantum system / detector Strong measurement on detector
- Final state is **NOT** an eigenstate
- Contradiction with QM ?

Feynman : towards practical use...

1958 : First integrated circuit

- 1959 : Possibility of manipulating and creating nanoscale objects

Transistor size (nm)

1965 : Moore's law Business argument

Quantum Information And Quantum computers

Quantum Information And Quantum computers

2400 BC – 1900 : mechanical power

Abacus (+, -)

Pascal (+, -)

HITACHI

2400 BC – 1900 : mechanical power

Loom machine : Card, storage

First US census

Babbage : Differential equations

Analytical machine

QWERTY (stuck rods)

Quantum Information And Quantum computers

1900-1940 : electro-mechanical power

- Enigma : WWII, U-boats
 - 3 rotors on 26 positions
 - 1 reflector
 - Electrical circuits / Pressed key
 - Cryptography

HITACHI

- Replacement of metallic parts
- Parts : glass tube, vacuum, 3 electrodes

Principle : Electron beam deflected by central electrode

Modulation of current, conditions on-off or 0-1

1910-1950 : Discharge tubes

- Glass bulbs : duration, quality, complexity, cost
- Bardeen (1947) and Shockley's mistake

Quantum Information And Quantum computers

1947 : Invention of transistor

Reduction in size and cost \rightarrow integrated circuits \rightarrow computers

Quick history

I	Years	Architectures	<u>Technologies</u>	Applications
	1935		SEM	BBC broadcast
	1947	Ge Transistor		
	1958	1 st integrated circuit		
	1960	1 st MOSFET	MBE, e-beam	1 st IBM computer
	1962			1 st laptop
	1973	10 mm		CPU 16 bits
	1980	MicroProc. GaAs	Laser photolithography	Family computer
	1987	Organic FET		
	1993	1 st SET, 800 nm		
	2004	Graphene		
	2007		He Orion	
	2009	45 nm		Smartphone
	2014	22 nm		

Size of transistors : Moore's law

Business model, not scientific

More and more calculus, more complex and longer

Increase in density : calculation power

Quantum Information And Quantum computers

More than Moore

From classical to quantum...

HIACH

Problem of decrease in CMOS size

Technology problem :

Engineering problem :

atomic dimensions :

- reproducibility (impurities and scalability)
- industrial fabrication

3D integration :

- connections
- heating, efficiency

Feynman and the quantum computer

Theoretical problem, parasitic quantum and nanoscale properties

 $L \rightarrow \xi \qquad \qquad \mu \rightarrow \tau \qquad \qquad n_{e^-} \rightarrow N = 1, 2, \dots$

Quantum system :

- Exponential size of Hilbert space
- Classical computer cannot simulate it
- Quantum computer uses QM properties
 - $N = 2 \rightarrow a and b : a, b, a+b, a-b$
 - N=3 \rightarrow a, b and c

 2^2 states, matrix 4 x 4 2^3 states, matrix 8 x 8

Notion of qubit

- **Qu**(antum) **bit** : 2 quantum states
- Quantum operation, unitary operator (Bloch sphere)

$$|\psi\rangle = \alpha |x\rangle + \beta |y\rangle + \gamma |z\rangle = U(\theta, \phi)$$

X Gate (1 qubit,
$$\pi$$
) : $10> \rightarrow 11>$
 $11> \rightarrow 10>$

CNOT (2 qubits) :

 $|00 > \rightarrow |00 >$ $|01 > \rightarrow |01 >$ $|10 > \rightarrow |11 >$ $|11 > \rightarrow |10 >$

 $HII\Delta(:HI$

Concept of entanglement

Example : 2 spins

$|\uparrow\rangle$, $|\downarrow\rangle$ \rightarrow $|\uparrow\uparrow\rangle$, $|\downarrow\downarrow\downarrow\rangle$ >, $|\uparrow\downarrow\downarrow\rangle$ > \pm $|\downarrow\uparrow\uparrow\rangle$ >

projective measurements (spin reversal, photon polarisation)

No communication via a share in entangled states

No faster-than-light transmission

Quantum Information And Quantum computers

Concept of cloning and teleportation

- No-cloning :
 - No identical copies of unknown quantum state
 - Only orthogonal states are possible
 - No classical techniques of error corrections
 - Imperfect copies possible

Unitary operation of the system Some cloned properties Quantum protocol attack

Concept of cloning and teleportation

- No teleportation :
 - Information **already shared** : entanglement creates states
 - No precise measurements (some part of uncertainty, Heisenberg)
 - No reconstruction of quantum states via classical states

Quantum Information And Quantum computers

- Natural loss of entanglement
- Coupling with classical environment
- Depends on system, measurement type
- Maximum time for operations (T_2)

ΗΠΑСΗ

- Breaking 1024 bits RSA : time
- Quantum algorithm faster (TRULY parallel)
- No possibility to obtain information by third party
- Crypting : secure transmission ??? weak measurement, noise...

Applications

Factoring large numbers (Shor algorithm)

Classical (reduction) and quantum (acceleration)

(Log N)³ instead of exp(log(N)^{1/3})

Banking and financial transactions

Scientific calculations (Astronomy, genome)

Industries vs Universities

- Industrial approaches : silicon, integration, cost, scaling
- Scientific approaches : GaAs (optics, e-), superconductors (Josephson junctions)
- Mixed approaches : DNA, molecules, biophysics
- Financial approaches : nano-objets but classical operation
 D-wave (quantum annealing, adiabatic)

A nano-object is not necessarily quantum !!!

<u>Purely solid</u> : electron-electron or local qubit
 <u>Purely optical</u> : photon-photon or flying qubit
 <u>Mixed</u> : electron-photon

Long distance communication :

- Local entanglement
- Information conversion
- Coherent transmission

Local qubits : Kane model

Local conditions :

Define	the qubit states

- *Initialise...* the computer in a defined state (**B**, **E**...)
- Determine... a set of universal operations
- Have... a long coherence time
- *Read...* the result with high probability
- *Realise...* a large number of qubits

Local qubits : Kane model

- 2 coupled P donors (hyperfine interaction)
 - 2 types of gates A, J

MOS structure

Exchange interaction

Modulation of interactions

Distance to be adjusted

Semiconductor qubit

Quantum dots (number of e- or energy levels)

N = 1-2

 $T_2 = 1.5 \text{ ms} (\text{III-V})$

- $T_2 = 100 \text{ ms in silicon}$
- Mono- or bi-atomic implantation

N = 1

 $T_2 = 45$ s (nuclear or electron state)

Superconducting qubits and others

Josephson junctions (charge, flux, phase)

Orientation of current

 $N = 5, T_2 = 20 \ \mu s$

Factorisation of 15

Orientation of molecule by *E*

 $N = 3, T_2 = 3 \text{ ms}$

Superconducting qubits and others

■ <u>NV centre</u> (NV⁰, NV⁻)

Defect due to N in diamond $N = 2, T_2 = 100 \text{ ms} (2012), 1 \text{ s} (2013)$

Atoms are spatially confined, Coulomb interaction CNOT in 1995 N = 14, $T_2 = 10$ s

Flying Qubits

Kane's extra conditions :

Coupling... a local qubit to photons (GaAs, Si ?) Propagating... photons in a coherent way (fibres...)

Principle :

Polarisation of photons (H, V or circular)

Photon pairs, bi-refringent lenses

 $N = 14, T_2 = 4 \text{ ms}$

Some optical quantum networks and successful transmissions

Interaction localised - delocalised

Single photon emitters and detectors :

GaAs : direct band-gap, well controlled growth Realised in 2005, impurities

Transistor detects photon absorption by quantum dots

Other trends and technologies

Photonic crystals : quantum dot in a cavity, optical circuits

- Quantum bus : displacing qubits over mm (not much, SAW)
- Future : mix of technologies (Si, GaAs, bio...)
- Classical calculations on nanoscale objets : QCA (cellular automata)

Future Challenges

Solutions and problems

- Coherence \rightarrow No more a problem, T_2 very large !!!
- Large scale production
- ➔ Depends on approaches
- ➔ Necessary selection

- Displacing information
- ➔ Optical fiber (quality)
- ➔ Repeaters (cloning)
- → Qubit buses (µm)

Conclusions

Quantum computing

A clear technological revolution that needed :

Quantum mechanics AND Advanced computers

- Quantum information, Quantum cryptography
 - Significant progress recently : scientific, technology & techniques
 - Single ion implantation, STM stability
 - Electron and nuclear spin control
 - Coherence time, dispersive readout (**PANEL on Tuesday**)

Advantages and inconvenients

- Advantages : Secure communications ? (weak measurement, noise)
 - True parallel processing
- Inconvenients : Decoherence (limited calculation/operation time)
 - Classical influence on quantum
 - Need for insulation ($T_2 \sim 1$ s but 10⁹ operations)
 - No possibility for storage (no cloning)
- Not enough developed : Integration / interface solid-optical

Final bits

Round table on Thursday :

- Measurement and entanglement
- Long distance entanglement (quantum on μm scale) ?

Could we really build fully a quantum computer ? Dream or reality ?

HITACHI Inspire the Next