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Evolution of thoughts : from corpuscles 

to quantum world
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Max Planck and the black body radiation

Evolution of thoughts : from corpuscles 
to quantum world
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Colour changes with temperature

Temperature T et frequency n ?

Thermal radiation and 

oscillators in equilibrium :

E =  n hn  1/l
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Albert Einstein : the photoelectric effect

Evolution of thoughts : from corpuscles 
to quantum world
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Generalisation to light

Photovoltaic and photoelectric effects

Contradicts the 2nd law of thermodynamics

Entropy

f =  hn = work function
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Bohr : atomic model

Evolution of thoughts : from corpuscles 
to quantum world
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Failure of Rutherford’s model

Atomic level quantisation

Emission spectrum of hydrogen : 

Discreet frequencies (series)

Hot gas emits photons (astrophysics)



© Hitachi, Ltd. 2015. All rights reserved.

Young slits

Evolution of thoughts : from corpuscles 
to quantum world
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Generalisation to particles (g, e-) 

Constructive and destructive interferences

Wave-corpuscle duality
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Erwin Schrödinger

Evolution of thoughts : from corpuscles 
to quantum world
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Atoms are waves, their states are wavefunctions

Probability (t, r)
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Copenhague interpretation

Evolution of thoughts : from corpuscles 
to quantum world
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A system is described by a wavefunction

The wavefunction is described by the Schrödinger’s equation

One can only measure a probability

Uncertainty principle :

Matter is both corpuscles and waves (experiments)

Quantum aspect disappears with size ???? (dipole interaction)
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Quantum entanglement

Evolution of thoughts : from corpuscles 
to quantum world
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Pauli exclusion principle : not 2 e- in the same state

Quantum superposition :

{ Y1 , Y2 }    ǀ Y1+2 > = a ǀ Y1 > + b ǀ Y2 >

a 2 +  b 2 = 1 

H2 molecule: bonding / antibonding

|1>                            E1

|0>                            E0
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Schrödinger’s cat, predictability

Evolution of thoughts : from corpuscles 
to quantum world
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Radioactive disintegration decides on the cat’s fate

Notion of observation :

Interaction with classical world

Projective measurement on eigenstate

Collapse of the wavefunction

Realism, complexity of QM

Coherence (T2), many worlds
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Weak measurements ( ! Dispute !)

Evolution of thoughts : from corpuscles 
to quantum world
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How to measure without destroying ?

Weak interaction between quantum system / detector

Strong measurement on detector

Final state is NOT an eigenstate

Contradiction with QM ?
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Feynman : towards practical use…

Evolution of thoughts : from corpuscles 
to quantum world
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1958 : First integrated circuit

1959 : Possibility of manipulating and creating

nanoscale objects

1965 : Moore’s law 

Business argument
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Quantum Information And

Quantum computers
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2400 BC – 1900 : mechanical power

Quantum Information And Quantum computers
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Abacus (+, -)

Pascal (+, -)
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2400 BC – 1900 : mechanical power

Quantum Information And Quantum computers
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Loom machine : Card, storage

First US census

Babbage : Differential equations

Analytical machine

QWERTY (stuck rods)
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1900-1940 : electro-mechanical power

Quantum Information And Quantum computers
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Enigma : WWII, U-boats

3 rotors on 26 positions

1 reflector

Electrical circuits /

Pressed key

Cryptography
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1910-1950 : Discharge tubes

Quantum Information And Quantum computers
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Replacement of metallic parts

Parts : glass tube, vacuum, 3 electrodes

Principle : Electron beam deflected by central electrode

Modulation of current, conditions on-off or 0-1
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1910-1950 : Discharge tubes

Quantum Information And Quantum computers
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Glass bulbs : duration, quality, complexity, cost

Bardeen (1947) and Shockley’s mistake

Ge type-n

Gold film

Polystyrene wedge

Ground

Input V Output VSurface states

Semiconductor

Metal

Inversion type-p
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1947 : Invention of transistor

Quantum Information And Quantum computers
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Transistor : principles                                                                    drain

gate

source 

Reduction in size and cost   integrated circuits   computers
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Quick history

Quantum Information And Quantum computers
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Years Architectures Technologies Applications

1935 SEM BBC broadcast

1947 Ge Transistor

1958 1st integrated circuit

1960 1st MOSFET MBE, e-beam 1st IBM computer

1962 1st laptop

1973 10 mm CPU 16 bits

1980 MicroProc. GaAs Laser photolithography Family computer

1987 Organic FET

1993 1st SET, 800 nm

2004 Graphene

2007 He Orion

2009 45 nm Smartphone

2014 22 nm
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Size of transistors : Moore’s law

Quantum Information And Quantum computers
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Continuous reduction in size : 1 cm 32 nm (22 nm in 2014)

Business model, not scientific

More and more calculus, more complex and longer

Increase in density : calculation power



© Hitachi, Ltd. 2015. All rights reserved.

More than Moore

Quantum Information And Quantum computers
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From classical to quantum…

Ec > kT
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Problem of decrease in CMOS size

Quantum Information And Quantum computers
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Technology problem : atomic dimensions :

reproducibility

(impurities and scalability)

industrial fabrication

Engineering problem : 3D integration :

connections

heating, efficiency
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Feynman and the quantum computer

Quantum Information And Quantum computers
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Theoretical problem, parasitic quantum and nanoscale properties

L x m t ne- N = 1, 2, …

Quantum system :

Exponential size of Hilbert space

Classical computer cannot simulate it

Quantum computer uses QM properties

N = 2  a and b : a, b, a+b, a-b 22 states, matrix 4 x 4

N = 3  a, b and c 23 states, matrix 8 x 8
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Notion of qubit

Quantum Information And Quantum computers
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Qu(antum) bit : 2 quantum states

Quantum operation, unitary operator (Bloch sphere)

I y > = a I x > + b I y > + g I z > = U(q, f)

X Gate (1 qubit, p) : I0>  I1>

I1>  I0 >

CNOT (2 qubits) : I 00 > I 00 >

I 01 > I 01 >

I 10 > I 11 >

I 11 > I 10 >
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Concept of entanglement

Quantum Information And Quantum computers
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Example : 2 spins

>, >  >, >, >± >

projective measurements (spin reversal, photon polarisation)

No communication via a share in entangled states

No faster-than-light transmission
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Concept of cloning and teleportation

Quantum Information And Quantum computers
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No-cloning :

No identical copies of unknown quantum state

Only orthogonal states are possible

No classical techniques of error corrections

Imperfect copies possible

Unitary operation of the system

Some cloned properties

Quantum protocol attack

Entanglement

U
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Concept of cloning and teleportation

Quantum Information And Quantum computers
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No teleportation :

Information already shared : entanglement creates states

No precise measurements (some part of uncertainty, Heisenberg)

No reconstruction of quantum states via classical states
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Decoherence and coherence

Quantum Information And Quantum computers
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Natural loss of entanglement

Coupling with classical environment

Depends on system,

measurement type

Maximum time for operations (T2)
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Quantum cryptography

Quantum Information And Quantum computers
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Breaking 1024 bits RSA : time

Quantum algorithm faster (TRULY parallel)

No possibility to obtain information by third party

Crypting : secure transmission ???

weak measurement, noise…
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Applications

Quantum Information And Quantum computers
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Factoring large numbers (Shor algorithm)

Classical (reduction) and quantum (acceleration)

(Log N)3 instead of exp(log(N)1/3)

Banking and financial transactions

Scientific calculations (Astronomy, genome)
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Various implementations : present status

32
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Industries vs Universities

Various implementations : present status
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Industrial approaches : silicon, integration, cost, scaling

Scientific approaches : GaAs (optics, e-),

superconductors (Josephson junctions)

Mixed approaches : DNA, molecules, biophysics

Financial approaches : nano-objets but classical operation

D-wave (quantum annealing, adiabatic)

A nano-object is not necessarily quantum !!! 
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Qubits types and long-range communication

Various implementations : present status
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Purely solid : electron-electron or local qubit

Purely optical : photon-photon or flying qubit

Mixed : electron-photon

Long distance communication :

Local entanglement

Information conversion

Coherent transmission
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Local qubits : Kane model

Various implementations : present status
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Local conditions :

Define… the qubit states

Initialise… the computer in a defined state (B, E…)

Determine… a set of universal operations

Have… a long coherence time

Read… the result with high probability

Realise… a large number of qubits
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Local qubits : Kane model

Various implementations : present status

36

2 coupled P donors (hyperfine interaction)

2 types of gates A, J

MOS structure

Exchange interaction

Modulation of interactions

Distance to be adjusted
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Semiconductor qubit

Various implementations : present status
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Quantum dots (number of e- or energy levels)

N = 1-2

T2 = 1-5 ms (III-V)

T2 = 100 ms in silicon

Mono- or bi-atomic implantation

N = 1

T2 = 45 s (nuclear or electron state)
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Superconducting qubits and others

Various implementations : present status
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Josephson junctions (charge, flux, phase)

Orientation of current

N = 5, T2 = 20 ms

Factorisation of 15

Molecule (charge, spin)

Orientation of molecule by E

N = 3, T2 = 3 ms
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Superconducting qubits and others

Various implementations : present status
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NV centre (NV0, NV-)

Defect due to N in diamond

N = 2, T2 = 100 ms (2012), 1 s (2013)

Ion traps

Atoms are spatially confined, Coulomb interaction

CNOT in 1995

N = 14, T2 = 10 s
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Flying Qubits

Various implementations : present status
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Kane’s extra conditions :

Coupling… a local qubit to photons (GaAs, Si ?)

Propagating… photons in a coherent way (fibres…)

Principle :

Polarisation of photons (H, V or circular)

Photon pairs, bi-refringent lenses

N = 14, T2 = 4 ms

Some optical quantum networks and successful transmissions
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Interaction localised - delocalised

Various implementations : present status
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Single photon emitters and detectors :

GaAs : direct band-gap, well controlled growth

Realised in 2005, impurities

Transistor detects photon absorption by quantum dots

p

n
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Other trends and technologies

Various implementations : present status
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Photonic crystals : quantum dot in a cavity, optical circuits

Quantum bus : displacing qubits over mm (not much, SAW)

Future : mix of technologies (Si, GaAs, bio…)

Classical calculations on nanoscale objets : QCA (cellular automata)
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Future Challenges
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Solutions and problems

Future challenges
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Coherence  No more a problem,T2 very large !!!

Large scale production  Depends on approaches

 Necessary selection

Displacing information  Optical fiber (quality)

 Repeaters (cloning)

 Qubit buses (mm)

Unbreakability  Quantum noise study (weak measurements)
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Conclusions
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Quantum computing

Conclusions
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A clear technological revolution that needed :

Quantum mechanics AND Advanced computers

Quantum information, Quantum cryptography

Significant progress recently : scientific, technology & techniques

Single ion implantation, STM stability

Electron and nuclear spin control

Coherence time, dispersive readout (PANEL on Tuesday)
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Advantages and inconvenients

Conclusions
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Advantages : Secure communications ? (weak measurement, noise)

True parallel processing

Inconvenients : Decoherence (limited calculation/operation time)

Classical influence on quantum

Need for insulation (T2~ 1 s but 109 operations)

No possibility for storage (no cloning)

Not enough developed : Integration / interface solid-optical
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Final bits

Conclusions
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Round table on Thursday :

Measurement and entanglement

Long distance entanglement (quantum on mm scale) ?

Could we really build fully a quantum computer ? Dream or reality ?




