
Università degli Studi dell’Insubria

Lessons learned on software maintenance:
any relief at horizon?

Luigi Lavazza

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell'Insubria

Varese, Italy

Maintenance: what to measure?

What am I paying for?

Measures are needed to relate maintenance costs to maintenance
activities.

Maintenance

 An activity

• The trousers analogy• The trousers analogy

 Maintenance vs. reuse

• The analogy does not hold any longer

Nice, October 14, 2014ICSEA 2014 2

What is currently measured
(Functional size measurement methods)

S1
S2

Functions made
available via the GUI:

 measured

Data managed by
the application:

 measured

Data entering/exiting
the application:

 measured

Nice, October 14, 2014ICSEA 2014 3

S1

S4

Sn

S3

S2

Services and components used
to implement the application:

× not measured

Problems

Reusability is always (to some extent) there, even when not strictly
required.

S2
S1

Nice, October 14, 2014ICSEA 2014 4

S4

Sn

S3

S1 and S3 were developed as part of
the project and are reusable.

Are they an additional asset for which
the developer should be paid?

Problems

Reuse is not measured by current FSM methods.

S2
S1

Nice, October 14, 2014ICSEA 2014 5

S4

Sn

S3

S1 and S3 were reused. They were not
developed as part of the project.

Should the customer pay for them?

Problems

The mixed case

S2
S1

Nice, October 14, 2014ICSEA 2014 6

S4

Sn

S3

S1 and S3 were reused. S4 was
developed within the project and is
reusable.

Problems

Maintenance
 The project is conceived as a maintenance project
 The size is measured at the interface/logical data level

S4 S3

S2
S1

Nice, October 14, 2014ICSEA 2014 7

S4

Sn

S3

S3 is modified. S5 is
newly developed as part
of the project.

S5

With current FSM methods, the
size of the maintenance
depends on how many user-
visible functions depend on S3
and S5.

A possible solution

Separate what is achieved from what is done.

What is achieved:

 New functionality

 New reusable assets

What is done:

 Components/services modified

Current FSM consider
only this aspect.

 Components/services modified

 Components/services added

• Size and complexity of the modifications/additions could be
measured

The result of the measurement should be a vector of measures.

Nice, October 14, 2014ICSEA 2014 8

+

LESSONS LEARNED IN
SOFTWARE MAINTENANCE :
Any Relief on the Horizon?

Dr. Stephen W. Clyde (swc)

Utah State University

ICSEA 2014

OCTOBER 14, 2014

+ swc’s Maintenance & Enhancement
Life Cycle

V
0
.1

V
1
.0

V
2
.0

V
2
.1

V
3
.0

V
3
.1

V
4
.0

V
4
.1

V
5
.0

V
5
.1

V
5
.2

Time

(sorry, no actual dates; they are too scary)

Continuous Integration

+ swc’s Maintenance & Enhancement
Life Cycle

V
0
.1

V
1
.0

V
2
.0

V
2
.1

V
3
.0

V
3
.1

V
4
.0

V
4
.1

V
5
.0

V
5
.1

V
5
.2

Rate of which
failures occur

+ swc’s Maintenance & Enhancement
Life Cycle

V
0
.1

V
1
.0

V
2
.0

V
2
.1

V
3
.0

V
3
.1

V
4
.0

V
4
.1

V
5
.0

V
5
.1

V
5
.2

Rate of which
failures occur

Rate of which
failures are
resolved

Maintenance
Deficiency

+
Antidotal Evidence on Software
Maintenance
(from a very informal, non-scientific study)

Examined a Pool of 26 projects
Commercial-grade, built-to-suite projects (real

customers, real needs, low tolerance for bad
software)software)

 In development and/or maintenance 2000-2014

 Significant personal involvement as project lead,
technical lead, consultant, or developer.

 Significant software developer hours

Maintenance = Bug Fixes, Upgrades, and
Enhancements

+
Application Domains

+
Software System Types

+ Development / Maintenance Years

Statistic Years

Minimum 0.5

Median 0.5

Average 0.96

Maximum 3

Years to 1st Release

Maximum 3

Statistic Years

Minimum 0.1

Median 4

Average 5.4

Maximum 30

Years of Maintenance

+
Current Status

+
Maintenance Severity – Pain
(subjective measurement)

+ Maintenance Issues
(weighted from top three and by severity)

+
Creating a Capacity to Maintain
(or evolve) Software Systems

Rate of which
failures occur

Rate of which
failures are
resolved

Capacity
to

We have to both:

 Reduce the rate at which failure (or requests for
new/change features) occur

 Increase our ability to resolve such issues quickly

to
Maintain

+
How Do we Improve Our
Maintenance Capacity

Anticipate or accommodate new or changing
requirements
 Better designs, with better separation of concerns
 Aspect Orientation can help, particular when using high-

level aspectslevel aspects

 Better anticipation on potential “bend” points in the
software

Choose development tools carefully; change
only if truly justified

Better Designs
 Flexible architectures, like service-oriented

architectures
 Adoption/Adaptation of appropriate design patterns

+
Is Any Relief on the Horizon?

Yes, but it dependents on us

 Individually, and

Collectively

Don’t expect relief to come from new tools
only

Relief will come from disciplined
application of what we know at the time

Panel Discussion
“Lessons Learned
on Software Maintenance:

Hideo Tanida
Software Engineering Laboratory
Fujitsu Laboratories Ltd., Japan

on Software Maintenance:
Any Relief at Horizon?

Copyright 2014 Fujitsu Laboratories Ltd.

Software Development Cycles

 Software development
has CYCLES

(≠ FLOW in waterfall model)

 “Software maintenance”
can be considered a term
referring to the whole cycle

Design

ImplementationRefinement

referring to the whole cycle

 Esp. in iterative
development styles such
as Agile development

We introduce two technologies for
“Understanding” and “Test”

 Are the technologies of any relief at horizon?

Copyright 2014 Fujitsu Laboratories Ltd.

Test

Operation

Understanding

1

Need for Support in Understanding Code

Maintaining and enhancing large and long-lived (10+ years)
IT systems are very difficult challenges.
 Increasing features, specifications, functionalities, and requirements

 Increasing complexity

 Knowledge loss

Rapid Understanding of IT systems is required.
Overall structure

What features exist Too many
IT Systems

What features exist ●Too many
features

●Too complex

IT Systems

data

document

人事・給与

システム

売上システム

外部
シス
テム

外部
シス
テム

コピー

source code

copy

Sales system

Personnel
payroll system

External
system

External
system

Copyright 2014 Fujitsu Laboratories Ltd.2

Software Map Technology

 Overall structure of the system

 What features exist in the
system?

 What source files are involved
in each feature?

 Current status of the features

enables rapid understanding of IT systems.

Software Map

 Current status of the features

Software Map also enables
important analyses:

are here!

Bright =
Highly Used

Messiness =
Low Quality

Outliers =
Design gaps Building =

source file
(class)

Copyright 2014 Fujitsu Laboratories Ltd.3

Analysis on JDK Swing 1.4.0 (536 classes)

We are successfully extracting
features, layers, and architectural knowledge
of target software

Copyright 2014 Fujitsu Laboratories Ltd.4

 Software evolves continuously with fixing and adding new
features

Need for Support in Compatibility Testing

Reconstruction

↓ Efficiency
↓ Reusability

↑ Efficiency
↑ Reusability

Main Issue:
Does the new system keep the same functionality of the old one?

⇒ Compatibility testing!

Copyright 2014 Fujitsu Laboratories Ltd.5

 Basic idea: Generate and run exhaustive test cases and
record outputs on one system, then check the outputs with
corresponding inputs on the other

How to Test the Compatibility of the new System

InputInputInput

InputInputOutput

out=1 out=4 out=1 out=5

in=2in=1

Incompatible

Check the outputs

Automation with
Symbolic Execution

Copyright 2014 Fujitsu Laboratories Ltd.6

Test Generation through Symbolic Execution

 Handle variables in target programs as Symbolics with constraints
on its value, and obtain test data meeting the constraints

Tests to be Generated
No Test Data Path Conditions

1 s = “”, a = 0
Lib.m1() = 0

(“”.equals(s)) ∧
(a <= Lib.m1())

2 s = “”, a = 0
Lib.m1() = -1

(“”.equals(s)) ∧
(a > Lib.m1())

3 s = “ “, a = 0 (!””.equals(s)) ∧
∧

Constraints to be
met by variables

Values
meeting cond.

s=null

“”.equals(s) !””.equals(s)

s.length() > 5s.length() <= 5

“”.equals(s) !””.equals(s)

Flow for Program under Test

Symbolic Vars.：s, a

Runtime
error in this

block!

3 s = “ “, a = 0
status= 0
Lib.m1() = 0

(!””.equals(s)) ∧
(s.length() <= 5) ∧
(a+status<=Lib.m1())

4 s = “ “, a = 1
status= 0
Lib.m1() = 0

(!””.equals(s)) ∧
(s.length() <= 5) ∧
(a + status>Lib.m1())

5 s=“ “(6 whitespaces)
a=0
Lib.m1()=0

(!””.equals(s)) ∧
(s.length() > 5) ∧
(a<=Lib.m1())

6 s=“ “(6 whitespaces)
a=0
Lib.m1()=1

(!””.equals(s)) ∧
(s.length() > 5) ∧
(a + status>Lib.m1())

(*) Initial values are used for variables
not referred in path conditions

return a

a= a+status

a <= Lib.m1() a > Lib.m1()

a = a + s.length()

block1 block2 block3block4

blockA blockB

“”.equals(s) !””.equals(s)

6 paths
extracted

Unreachable

Copyright 2014 Fujitsu Laboratories Ltd.7

Re-engineering of a SMTP library

 As Is

• The source code of the server products’ monitor is different from that of the
storage systems.

• However their SMTP libraries have similar features

 To Be

• The both of SMTP libraries are unified

Compatibility test Results

Evaluation on a Re-engineering Project

Compatibility test Results

Manual testing Our approach

Man-months 1.5 4

of test cases 545 10846

of detected bugs 27 27+5

Comparison of Manual testing and our approach

Copyright 2014 Fujitsu Laboratories Ltd.8

Discussions

 In addition to Understanding and Test, what are the steps
requiring efforts during maintenance?

 Automatic conversion of legacy code into higher level description etc.

 Efforts on earlier stages (better documents)
will ease maintenance at later stages,
but how can we motivate developers?but how can we motivate developers?

Duration of software maintenance in general?

Which class of software should researchers target?

We are dealing with systems lived for 10+ years, but is it common?

 Are the two technologies introduced of any relief at horizon?

Copyright 2014 Fujitsu Laboratories Ltd.9

Copyright 2014 Fujitsu Laboratories Ltd.10

Panel discussion

Lessons Learned on Software
Maintenance:

Any Relief at Horizon?

 Roy Oberhauser

Aalen University
Germany

 What kind of SW maintenance is being done? [1]

 Corrective – diagnosing and fixing (~20%)
 Adaptive –coping with SW environment
 Perfective – functional enhancements
 Preventative – (4%)

 US SW industry employees 2010
 3M in SW maintenance, 800K in development (~80%) [2]

Proportionately maintenance is mostly about
evolutionary development

- yet fixing defects seems our greatest concern

2

State of SW Maintenance

© 2014 Roy Oberhauser

Evolutionary
development

 Cost and criticality (especially infrastructure)
to society & business

 Sheer code volume and defect rates
 Increased value of bugs/vulnerabilities
 Greater usage and reliance on software systems
 Increased data behind any breach
 Increased misuse market for discovered defects
 Easier widespread reuse/dispersment of defective code

-> huge dependency chains (e.g., OpenSSL Heartbleed 1/2/...)

Correction work costs pale in relation to

indirect costs and risks of a bug!

3

Maintenance Impacts and Importance

© 2014 Roy Oberhauser

 DevOps & Continuous Delivery -> Now a Continuum
 Changing public & business maintenance perception?
 Hidden systems: PC-based vs. Cloud vs. Embedded
 Bus slogan: “Leave the driving to us”...
 Don’t pay unless it hurts... Need forced “health insurance”?
 Product backlog – what about a Maintenance backlog?

 Virtualization -> can isolate SW environment
 Perhaps reduce adaptive maintenance?

 Forking OSS repositories -> Fix-It-Yourself
 Etc.

 4

Potpourri of Trends Affecting Maintenance

© 2014 Roy Oberhauser

 Perfect implementation or perfect maintenance?
 API usage and semantics
 Software entropy and technical debt
 Agile software processes & generational comm.
 Maintenance is typically a “step-child”

 Comprehending SoS impacts and interactions
 Interdependencies across application boundaries

 But...
 “Almost all grave software problems can be traced to

conceptual mistakes made before programming started” -
 - Prof. Jackson of MIT in Scientific American June 2006

5

Some Maintenance Challenges

© 2014 Roy Oberhauser

 Our perceptions?
 We all eat a healthy diet, right?

 Best wishes or best practices?
 Execution of maintenance-relevant agile practices lag the rest
 Refactoring, Test-driven development in the bottom 3 according to the

Forrester Research Q3 2009 Global Agile Adoption Survey
 Sprint Review of Bug Fixes?!!

 Lessons, well, it depends:
 Organizational priorities, size, financing, cultural risk averseness
 System criticality, etc.

 Human psychological influences not considered
 Mood-aware programming/debugging [3]

 Sleep & smart-phone distractions: driver crashes vs. programmers...
 One lesson “learned”: Shared code transparency?

6

Some Lessons Learned ?
Some Benefits Reaped?

© 2014 Roy Oberhauser
Forrester Research Q3 2009 Global Agile Adoption Survey

 Software Maintenance Maturity Model (S3M)?
 Improved education, training, & certifications?
 MOOCs and YouTube to the rescue?

 Sexy tools
 Better analytical and design verification tools and metrics
 Automated anomaly detection, debugging
 Advances in formal verification

 Automated bug repair or assistance
 Software reverse engineering tools

 Millennials: Who cares about maintenance anyway?
 Disposable Apps/Software? Dynamic Applications?

End-User Programming?
 Integrate “Digital Natives” into maintenance?

7

Supposed Relief on the Horizon?

© 2014 Roy Oberhauser

Since so much can go wrong...
No one technique or tool

can or will dominate SW maintenance,
it requires a holistic human, social, and technical approach

Best we can hope for...
 Increase awareness of value of maintenance
 Incremental improvements that slowly address

a monumental amount of software already
produced and to be maintained,

and that which we are about to produce

Thank you!

8

Conclusion

© 2014 Roy Oberhauser

[1] Eick, S., Graves, T., Karr, A., Marron, J., and
Mockus, A. 2001. Does Code Decay? Assessing
Evidence from Change Management Data. IEEE
Transactions on Software Engineering. 27(1) 1-12.
[2] C. Jones. The Economics of Software
Maintenance in the 21st Century, V3. 2006.
[3] Khan, I. A., Brinkman, W. P., & Hierons, R. M.
(2011). Do moods affect programmers’ debug
performance?
Cognition, technology & work, 13(4), 245-258.

9

References

© 2014 Roy Oberhauser

Maintenance of Web Services

ICSEA 2014

Dr. Michael Gebhart

 Today, more and more web services are developed

 e.g. RESTful web services as backend for apps on mobile devices

 Functionality to provide web services is part of the application

 The quality of the entire system is strongly influenced by the quality of the web services

 More than ever, we need to design web services with care

 Maintenance with focus on the IT system

Maintenance of Web Services

Internal View

© iteratec | 14.10.2014 Maintenance of Web Services Seite 2

A
p
p
lic

a
ti
o
n

S

e
rv

ic
e
s

How easy is it, to

change the web service?

Component Component Component Component

Component Component

 Services are understood as assets

 Quality characteristics that influence the maintainability: unique categorization (cohesion),

loose coupling, autonomy, discoverability etc.

 Maintenance with focus on the service-oriented architecture

Maintenance of Web Services

External View – Service-Oriented Architectures

© iteratec | 14.10.2014 Maintenance of Web Services Seite 3

B
a
s
ic

S
e
rv

ic
e
s

C
o
m

p
o
s
e
d

S
e
rv

ic
e
s

How easy is it, to

change the web service?

Business Process Business Process

Business Process

 Service-Oriented Architecture is business-driven

 Often, necessary information is not part of the source code or interface description

 Manual information is necessary

 Creation of a quality model with best practices as quality indicators that refer to web

services as artifacts

 Combination with manual knowledge

 Interaction with experts is necessary

 Hybrid approach is proposed that combines automated analysis with manual knowledge

Creation of Maintainable Web Services

(Semi-)Automated Measurement of Quality Indicators

© iteratec | 14.10.2014 Maintenance of Web Services Seite 4

?

Maintainability
?

Quality Indicators

Quality Attributes

Manual

Knowledge

Automatically

Retrievable Knowledge

 Gebhart, M., Giessler, P., Burkhardt, P., & Abeck, S. (2014). Quality-Oriented Requirements Engineering

for Agile Development of RESTful Participation Service. In H. Mannaert, L. Lavazza, R. Oberhauser, M.

Kajko-Mattsson, & M. Gebhart (Eds.), Proceedings of the Ninth International Conference on Software

Engineering Advances (ICSEA) 2014 (pp. 69-74). ISBN: 978-1-61208-367-4.

 Gebhart, M. (2014). Query-Based Static Analysis of Web Services in Service-Oriented

Architectures. International Journal on Advances in Software, 7(1&2), 136-147.

 Gebhart, M., & Sejdovic, S. (2012). Quality-Oriented Design of Software Services in Geographical

Information Systems. International Journal on Advances in Software, 5(3&4), 293-307. Gebhart, M. (2012).

Service Identification and Specification with SoaML. In A. D. Ionita, M. Litoiu, & G. Lewis (Eds.), Migrating

Legacy Applications: Challenges in Service Oriented Architecture and Cloud Computing Environments (pp.

102-125). Hershey, PA: IGI Global. doi: 10.4018/978-1-4666-2488-7. ISBN: 978-1-46662488-7.

 Gebhart, M., Baumgartner, M., & Abeck, S. (2010). Supporting Service Design Decisions. In J. Hall, H.

Kaindl, L. Lavazza, G. Buchgeher, & O. Takaki (Eds.), Proceedings of the Fifth International Conference on

Software Engineering Advances (ICSEA) 2010 (pp. 76-81). doi: 10.1109/ICSEA.2010.19

 Gebhart, M., Baumgartner, M., Oehlert, S., Blersch, M., & Abeck, S. (2010). Evaluation of Service Designs

based on SoaML. In J. Hall, H. Kaindl, L. Lavazza, G. Buchgeher, & O. Takaki (Eds.), Proceedings of the

Fifth International Conference on Software Engineering Advances (ICSEA) 2010 (pp. 7-13). doi:

10.1109/ICSEA.2010.8

 Gebhart, M., & Abeck, S. (2009). Rule-Based Service Modeling. In K. Boness, J. M. Fernandes, J. G. Hall,

R. J. Machado, & R. Oberhauser (Eds.), Proceedings of the Fourth International Conference on Software

Engineering Advances (ICSEA) 2009 (pp. 271-276). doi: 10.1109/ICSEA.2009.48

Recommended Literature

Quality Analysis of Services and Service-Oriented Architectures

© iteratec | 14.10.2014 Maintenance of Web Services Seite 5

Thank you for your attention

Dr. Michael Gebhart

michael.gebhart@iteratec.de

