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Applicability of Stochastic Robustness Model 
 variety of computing and communication  

environments, such as 
cluster 
grid 
cloud 
multicore 
content distribution networks 
wireless networks 
sensor networks 

design problems throughout various  
scientific and engineering fields 
examples we are exploring 

 search and rescue 
 smart grids 
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Heterogeneous Parallel Computing System 
 interconnected set of different types of  

machines with varied computational capabilities 
workload of tasks with different  

computational requirements 
each task may perform differently  

on each machine 
furthermore: machine A can be better than  

machine B for task 1 but not for task 2 
 resource allocation:  

assign (map) tasks to machines  
to optimize some performance measure 
NP-complete (cannot find optimal in reasonable time) 
ex.: 5 machines and 30 tasks →  530 possible assignments 

 530 nanoseconds  > 1,000 years! 
use heuristics to find near optimal allocation 

 
 



•6 

 sensors produce periodic data sets, each with multiple data files 
 N independent tasks process each data set within Λ time units 
 N tasks statically assigned to M heterogeneous machines, N>M 
 similar computing environments 
satellite data sets for producing maps 
surveillance data sets for homeland security 

 

Ex.: Radar Data Processing for Weather Forecasting 
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Uncertainty in Environment 
variability across the data sets results in variability of the 

execution time of each task even on the same machine 
examples 

 types of objects found in a radar scan data file 
 increase in number of objects in a radar scan data file 

 
 
 

 
unable to predict exact execution times of tasks 
uncertainty parameters in the system 
know history of task execution times on each machine  

over different data sets 
need to find resource allocation of tasks to machines that 

is robust against this uncertainty by using this history 
•7 7 



8 

Problem Statement 
unpredictable execution times of the tasks across data sets 
 calculate the probability that every data set is 

processed before the next data set arrives 
have a probabilistic guarantee of performance 

problem statement 
determine a robust static resource allocation  
minimize time period (Λ) between data sets  
constraint: a user-specified probability of 90% that  

all tasks will complete in Λ time units for each data set 
  

robust 
resource 
allocation 

machines 
performance measure 

constraints 
uncertainties 

heuristics 

tasks 



 term “robustness” usually used without explicit definition 
The Three Robustness Questions 

1. what behavior of the system makes it robust? 
 ex. execute all tasks within Λ time units 

2. what uncertainty is the system robust against? 
 ex. execution times of tasks vary over different data sets 

3. how is robustness of the system quantified?  
 ex. probability that the resource allocation will  

execute all tasks within Λ time units for every data set 

Defining Robustness for Resource Allocation 



● definition of robustness 
● stochastic model and metric for robustness    
● integration into static resource allocation heuristics 
● use of model for a dynamic environment 
● conclusions 
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Construct Histogram from Collected Information 
 know history of task execution times on each machine 

over different data sets 
 consider collecting samples of how long a given task  

has taken to execute on a given machine in a histogram 
x-axis: execution time within 10 second interval bins 
y-axis: frequency = height of bar for a given interval 
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Generating a PMF from a Histogram 
a probability mass function (PMF) can be generated  

using a histogram 
 convert the frequency to a probability to create PMF 
probability = frequency/total # samples 

example: probability of value from 10 to 19 = 6/200 = 3% 
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assume task 1 and task 2 only tasks assigned to machine A  
can find completion time PMF for machine A to do both tasks 
if tasks independent, it is  the “discrete convolution” 

(combination) of the execution time PMFs for the two tasks 
 
 
 
 
 
 
 

 
 

   
 

 

PMF for Completion Time of Machine 
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Intuitive View of Stochastic Robustness  

PMFs for machine completion time based on 
(1) PMFs for tasks already assigned to that machine, and 
(2) PMF for task i – which may be assigned to that machine 
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assign 
task i to 
machine A 
or B? 

mean → A 
sum of 

heights 
of pulses 
> deadline 
→  B 

if task i added to  
queue of  
machine B 

if task i added to queue 
of machine A 

mean 
completion time 
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completion time 
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deadline of Λ  
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exceeding Λ 
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completion time 



 Tij : execution time random variable  
for task i on machine j  

 Sj : stochastic completion time for  
machine j  (tasks independent)  
 

  Λ : deadline for completing all tasks 
 machine j stochastic robustness Prob[Sj  ≤ Λ] 
 Stochastic Robustness Metric (SRM)  
assuming independence of machines 

 
 

 goal of heuristics – two possible robustness situations  
maximize SRM for a given Λ value 
minimize Λ for a given SRM value 
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Stochastic Robustness Heuristic Goals 
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Outline 

● definition of robustness 
● stochastic model and metric for robustness    
● integration into static resource allocation heuristics 
● use of model for a dynamic environment 
● conclusions 



Static Resource Allocation Heuristics 
goal: static assignment of N tasks to M machines  
minimize Λ for a given SRM value, for example 90% 

greedy heuristics 
example: Two-Phase 
allocation made with locally optimal decisions 

global heuristics 
example: Genitor – steady-state  

genetic (evolutionary) algorithm 
improve allocation over iterations 

greedy heuristic generally derives allocation faster than global 
global heuristics can improve upon greedy results  
use Lambda Minimization Routine (LMR)  

to find for a given resource allocation the  
minimum Λ is for SRM value of 90% 
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 Λ = 4 
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time PMF 

18 

  Lambda Minimization Routine (LMR) 
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Two-Phase Greedy Heuristic 
based on the concept of the Min-min heuristic 
Λ(ti,mj) call to LMR function for minimum Λ  

if task ti is added to machine mj  
 

Two-Phase Greedy procedure 
while there are still unmapped tasks 

 

phase 1: for each of the unmapped tasks  
 j value that minimizes Λ(ti,mj), 1 ≤ j ≤ M 

 
phase 2: among these task/machine pairs  

 find pair with minimum Λ(ti,mj) 
 map this task to its associated machine 
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Genitor Steady State Genetic Algorithm (GA) 
chromosome of length N (number of tasks) = a mapping (solution) 
i th element identifies the machine assigned to task i  

 
 

population size of 200 (decided empirically) 
 initial population generation 
one chromosome: solution from the  

Two-Phase Greedy heuristic (“seed”) 
other 199: simple greedy heuristic 

population is put in ascending order based on minimum  
Λ value for the given SRM (probability)  
LMR (Lambda Minimization Routine)  

is used to find minimum Λ value  
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Procedure for Genitor 
 generate initial population   
 while stopping criterion 
select two parent chromosomes  

from the population 
perform crossover 
 for each offspring chromosome 

 perform mutation 
 apply local search  

 insert offspring into population  
based on minimum Λ order 

 trim population to population size 
 end of while 
 output the best solution 
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Genitor: Crossover 
 selection of parents is done probabilistically 
 crossover is “two point reduced surrogate” 
crossover points are randomly selected  

so that at least one element is different 
elements between crossover points are exchanged 
generates two offspring 
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offspring a offspring b 

  parent a parent b 



Genitor: Mutation 

mutation applied to offspring  
obtained from the crossover  
 for each element of each  

offspring chromosome 
 assignment has a 1%  

probability of mutation 
mutation randomly selects  

a different machine 
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Genitor: Local Search 
 local search applied to each offspring 
1. for machine with individual highest Λ  

 consider moving each task  
to other machines  

 if improvement, move the task that  
gives smallest overall system Λ 

2. repeat 1 until no more improvement 
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Recall: Procedure for Genitor 
 generate initial population   
 while stopping criterion 
select two parent chromosomes  

from the population 
perform crossover 
 for each offspring chromosome 

 perform mutation 
 apply local search  

 insert offspring into population  
based on minimum Λ order 

 trim population to population size 
 end of while 
 output the best solution 
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Simulations: Performance of Static Heuristics 

•Two-Phase 
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 N = 128 tasks, M = 8 machines, SRM value set to 90% 
 50 simulation trials, different PMFs for task/machine pairs 
 95% confidence intervals shown 

Genitor   lower bound 

Genitor better than Two-Phase 
by more than 7% (based  

on absolute performance) 
by 50% based on  

lower bound 
but takes 200 times longer 

SA ACO 
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Dynamic System Model 
modeled after real-world satellite imagery processing system 
 cluster of M heterogeneous machines 
each dynamically arriving user request has three elements 
which existing utility application to be executed 
archived data to be processed by that application 
individual deadline for completing that particular request 

 agreement between service provider and customer 
if miss deadline, complete on a “best effort” basis 

 resource manager assigns requests to machines 

28 

user request 

resource manager 

heterogeneous 
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Dynamic System Performance Goal 
application execution time dependent on data size and content 
probability mass functions (PMFs) for each application’s 

execution time on each machine, based on experiential data 
no inter-application communication 
 requests cannot be re-assigned 
assume data needed for request is staged to machine  

while request in queue 
goal: complete all requests by their individual deadlines 
late requests will be completed on “best effort” basis 
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Three Robustness Questions for Dynamic System 
what behavior makes the system robust? 
completing all requests by their individual deadlines 

what uncertainty is the system is robust against? 
application execution times may vary substantially 

how is robustness of the system quantified? 
probability of completing all requests  

by their individual deadlines 
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Probability of Completing All Requests by Deadlines 

a new mapping event is  to occur at time-step t(k) 

 rij – i th request assigned to machine j at time-step t(k) 

p(rij) – probability of completing rij by its deadline 

nj – number of requests assigned to machine j at time-step t(k) 

p(r1j , r2j , ··· , rnj j
 ) – joint probability of completing  

all requests assigned to machine j by their individual deadlines 

31 

r1j rnj j
  ···  r3j    r2j 

machine j queue 

machine j 

executing 



time 
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time 
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Calculating Joint Probabilities ― p(r1j , r2j ) 

1. find p(r1j): prob. r1j meets deadline 
a) t(k) = current time  
 drop pulses < t(k)  
 renormalize 

b) sum pulses < deadline D1j 
2.  find p(r1j, r2j) = p(r1j) ∙ p(r2j | r1j)  

a) find PMF for r1j meeting D1j 
 drop pulses >  deadline D1j 
 renormalize 

b) convolve with execution  
time PMF for r2j 

c) p(r2j | r1j) =  
 [sum pulses < deadline D2j] 
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Dynamic Stochastic Robustness Metric 

 find probability to complete all requests p(r1j, r2j, ···, rnj j
) 

          p(r1j, r2j )  = p(r1j) ∙ p(r2j | r1j) 
     p(r1j, r2j, r3j)  = p(r1j, r2j ) ∙ p(r3j | r1j, r2j ) 
        = 
p(r1j, r2j, ···, rnj j 

)  = p(r1j, r2j, ···, rnj−1 j ) ∙ p(rnj j
 | r1j, r2j, ···, rnj−1 j ) 

 
ρ(k) – stochastic robustness metric at time-step t(k) 

 
 

we use ρ(k) in dynamic resource allocation heuristics 
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Current and Future Research 
methods to build the initial PMFs 
update PMFs using experiential data 
effective techniques for convolving PMFs  
 incorporating stochastic robustness into static and dynamic 

resource allocation heuristics for different  environments 
considering energy or power as a performance or constraint 
combining PMFs and probabilities when not independent 
ex. DAG of communicating tasks 

use relative probabilistic information about uncertainty values 
how to combine the PMFs from multiple uncertainties  

to calculate single SRM  
how to be robust with respect to inaccuracies in the PMFs 

 



The Three Robustness Questions 
1. what behavior of the system makes it robust? 
2. what uncertainties is the system robust against? 
3. how is robustness of the system quantified?  

 

devised a stochastic model for robust resource allocation 
used stochastic robustness in resource allocation heuristics  
 listed areas for future research in robustness 
please see our papers listed at 

www.engr.colostate.edu/~hj/Robust_Papers.pdf 
for more information and references to other relevant research 

Concluding Remarks 
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