
# Effective Management and Exploration of Scientific Data on the Web.

Lena Strömbäck Iena.stromback@liu.se Linköping University

expanding reality



#### **Example: New York Times**



111 100

LiU

#### Example: Baby Name Vizard Laura Wattenberg – Generation Grownup

| 🖉 Mest besökta 📄 Kom igång 🔊 Senaste nytt 🔅 LITH: Intern information                                                                                            | 8  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 🖻 Mest besökta 🖹 Kom igång 🔊 Senaste nytt 🚯 LITH: Intern information                                                                                            |    |
|                                                                                                                                                                 |    |
|                                                                                                                                                                 |    |
| 🗹 Gmail - Inkorgen - Iena.me.stromba 🗴 🛐 Google Kalender                                                                                                        |    |
| NameVoyager: Explore name trends letter by letter Embed Share This                                                                                              | *  |
| Surf the NameVoyager by name endings, letter combos & popularity, plus get more amazing name finding tools with Baby Name Wizard Expert                         |    |
| Baby Name > Le X O Both O Boys O Girls 2009 rank: boys 1000 500 100 25 1                                                                                        |    |
| girts 1000 500 100 25 1                                                                                                                                         |    |
| Names starting with 'LE' per million bables                                                                                                                     |    |
| 20,000 tinyprints                                                                                                                                               |    |
| 18,000                                                                                                                                                          | -  |
| Celebrate Every<br>Moment in Style with                                                                                                                         | 14 |
| 16,000 Invites, Birth<br>Announcements                                                                                                                          |    |
| 14,000 and more!                                                                                                                                                |    |
|                                                                                                                                                                 |    |
| 12,000                                                                                                                                                          |    |
| Leona Loon 10,000                                                                                                                                               |    |
|                                                                                                                                                                 |    |
| Leonard 8,000                                                                                                                                                   |    |
| Rank in 1910s: 43                                                                                                                                               |    |
|                                                                                                                                                                 |    |
|                                                                                                                                                                 |    |
|                                                                                                                                                                 |    |
|                                                                                                                                                                 |    |
| 1880s 1890s 1910s 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2009<br>Click a name graph to view that name. Double click to read more about it. |    |
| For more options, click here to sign up for the Expert Name Voyager.                                                                                            |    |
|                                                                                                                                                                 | *  |
|                                                                                                                                                                 |    |

LiU

#### Example: Many Eyes IBM Research and the IBM Cognos software group



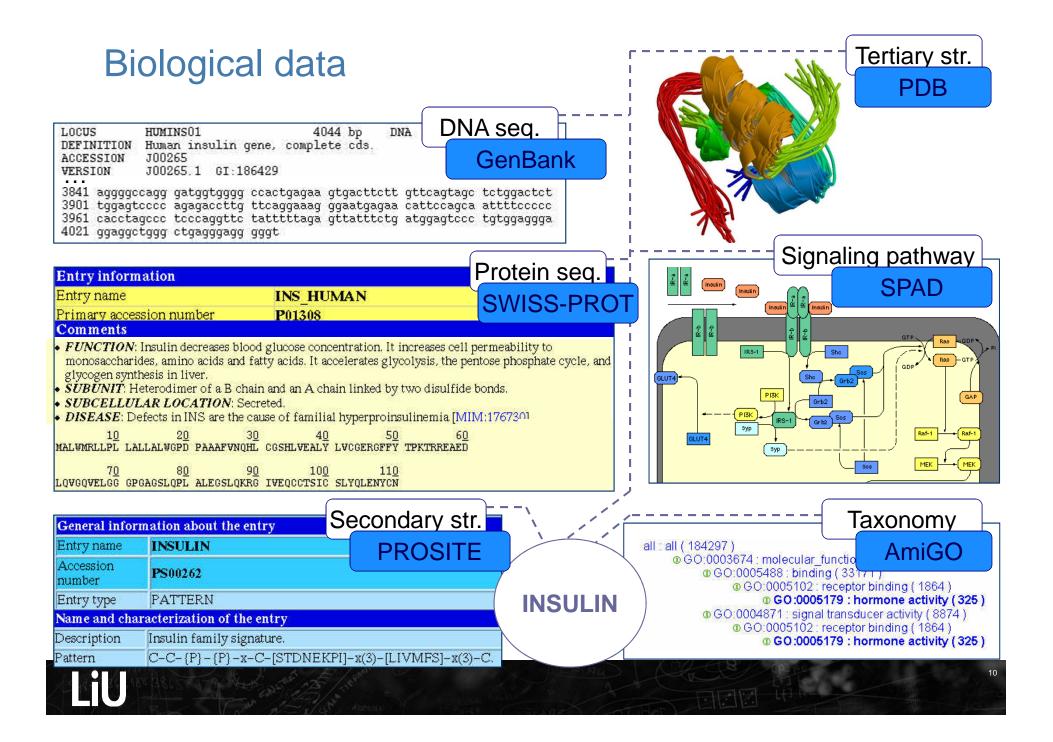
Lt J too

#### **E-Science data**

- Complex data
- Not easily human interpretable
- Need for integration and comparison
- Powerful computation needed

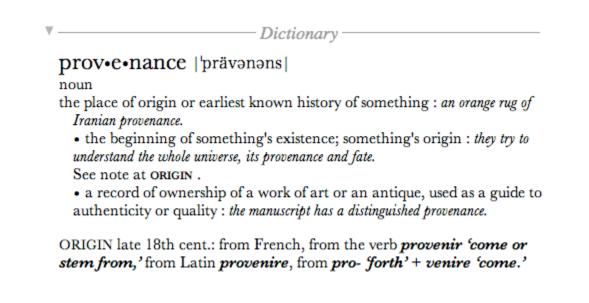
#### To further complicate the task

- Standardization and agreement of common formats is a prerequisite for efficient data management
- The Web is an ad-hoc platform where new data formats and actors occurs all the time


#### Content of this presentation:

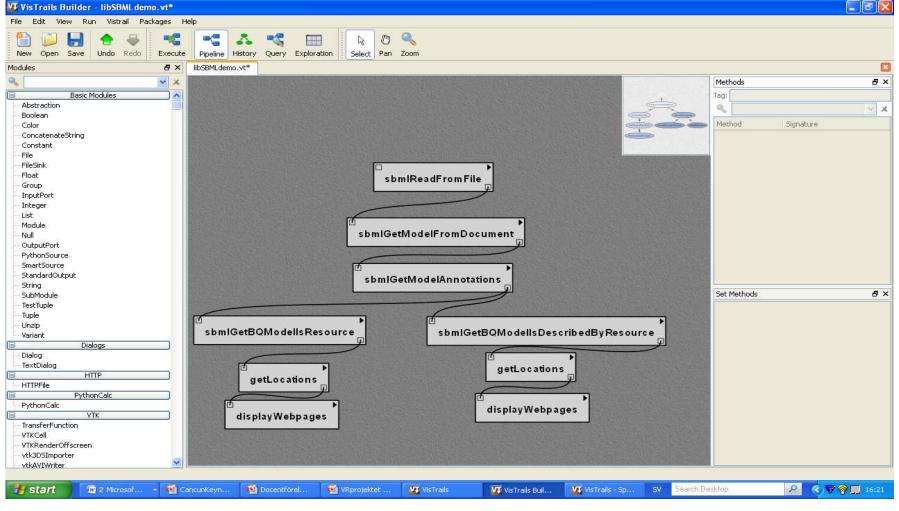
- Two scientific application areas
  - Provenance/Scientific workflows
  - Bioinformatics
- Three different aspects
  - Interfaces for exploration
  - Seamless data integration
  - Effective data exploration

#### Content of this presentation:


#### Two scientific application areas

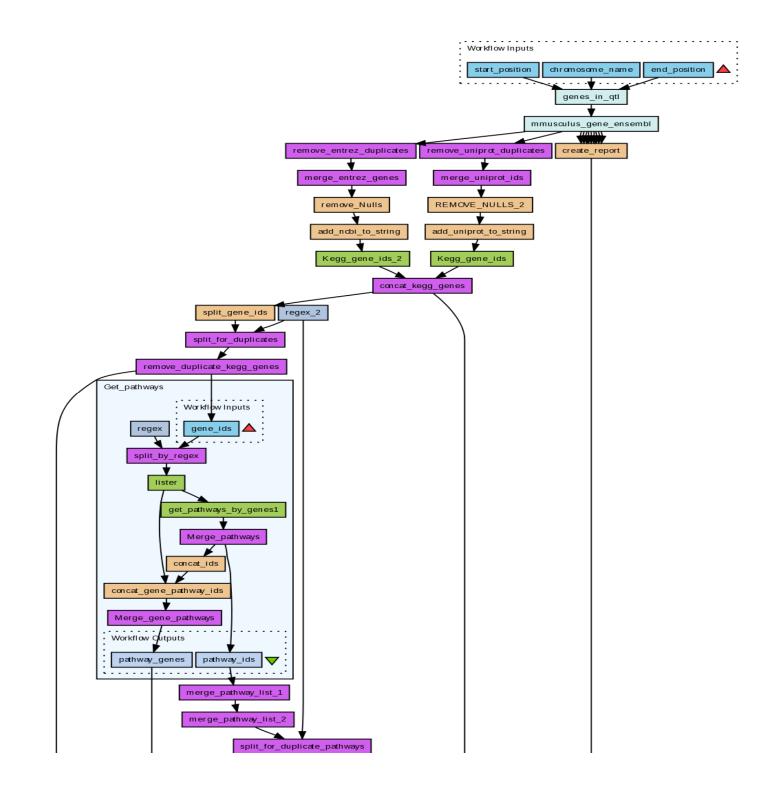
- Provenance/Scientific workflows
- Bioinformatics
- Three different aspects
  - Interfaces for exploration
  - Seamless data integration
  - Effective data exploration




#### Capturing provenance

- Provenance of scientific artifacts is necessary to reproduce, validate and share scientific results
- Provenance can be as important as the results!






## Scientific workflows and provenance – capturing biological data integration



12

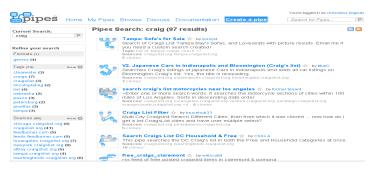
Ltites



#### Scientific workflows

#### Advantage of workflows

- Easy to edit
- Reusable
- Sharable


#### **Reusing workflows**

Large collections have become available How to take advantage of this information?

#### Finding specific workflows

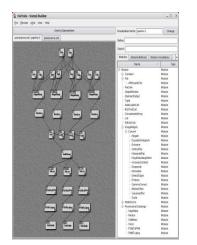
Workflow Search Engines Workflow Query Languages

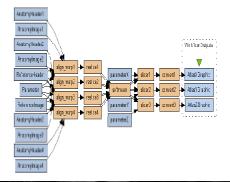






14


#### LiU


#### Content of this presentation:

- Two scientific application areas
  - Provenance/Scientific workflows
  - Bioinformatics
- Three different aspects
  - Interfaces for exploration
  - Seamless data integration
  - Effective data exploration

#### Issues in workflow search

- Different types of search methods
  - Keywords
  - Structured queries workflow query language
  - Workflow similarity clustering
- Capturing the user intent
- How to rank results
  - Calculate most relevant workflow from a user query
- How to display result
  - Workflow snippets, descriptions, thumbnails





16

LiU

#### Workflow snippets - state of the art



View Results View Source

This pipe searches every Craigslist classified in the following states (CO, WY, UT) and outputs all results with the word "recumbent" into an RSS feed, sorted by date. It allows text entry to refine the search further (example: Rans, Bacchetta, Gold Rush, etc) **Sources:** craigslist.org denver.craigslist.org saltlakecity.craigslist.org boulder.craigslist.org fortcollins.craigslist.org +10... 1 clones

Discover\_proteins\_from\_text (V2)

Created: 15/11/07 @ 08:58:00 | Last updated: 15/11/07 @ 09:12:34

Recumbent Bike Finder (Mountain US) 🛧 by jillian

Credits: 🧟 Marco Roos 🚕 AID

License: Creative Commons Attribution-Share Alike 3.0 License



This workflow discovers proteins from plain text, it is built around the AIDA 'Named Entity Recognize' web service by Sophia Katrenko (service based on LingPipe), from which output it filters out proteins. The Named Recognizer services uses the pre-learned genomics model, named 'MedLine', to find genomics concepts in plain text.

Rating: 0.0 / 5 (0 ratings) | Versions: 2 | Reviews: 0 | Comments: 0 | Citations: 0

Viewed internally: 64 times | Downloaded internally: 24 times

#### Tags (7):

AIDA | BioAID | biorange\_nl | protein | text\_mining | text\_mining\_network | VL-e

- Emphasis on meta-data
- Low quality when information is insufficient or absent

#### BioMart\_hsapiens\_gene\_ensembl\_variation\_Noom\_Edit\_09\_12\_2551

View Results View Source

(v1)

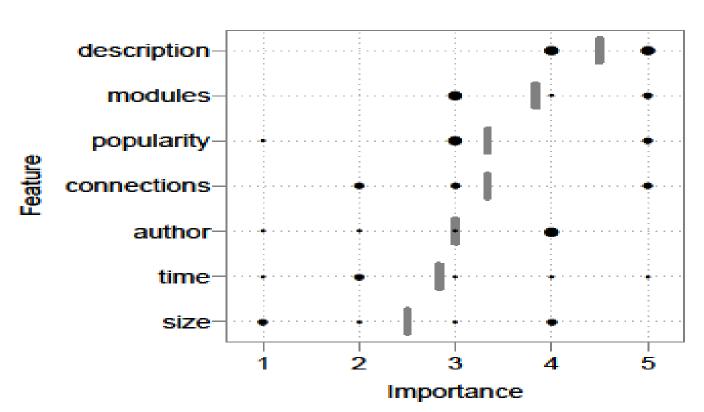
Created: 17/12/08 @ 09:08:50 | Last updated: 26/12/08 @ 07:51:03

Fetch 🛠 by AndresVia

3 clones

Fetch any URL, that has feeds.

Credits: 🤱 Kasikrit


License: Creative Commons Attribution-Share Alike 3.0 License



This Workflow has no tags!



#### Important features



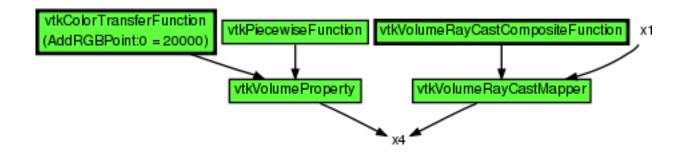
#### Feature Importance

18

LiU

#### **Requirements for snippets**

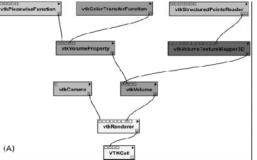
- Self-contained
  - A snippet should contain the **context of a keyword**
- Representative
  - The user should be able to grasp the essence of the result from its snippet.
- Distinguishable
  - The snippet should make the corresponding query result distinguishable from other results
- Small
  - A snippet should be **small** so that it is easy to browse several results
- Huang, Liu and Chen (2008) Query biased snippet generation in XML search. SIGMOD 2008.


#### Requirements for workflow snippets

- Self-contained
  - If a keyword matches a module, its parameters or annotation then that module should be included in the snippets.
- Representative
  - Include the modules representing the most prominent features of a workflow and include them in the snippet.
- Distinguishable
  - Find and display the **structural differences** among the workflows
- Small
  - We show **maximum g modules**



## Selection strategy 1: Query neighborhood


- Identify the most important modules in the neighborhood of modules matching the keywords.
- Algorithm:
  - 1. Choose the modules matching the keywords
  - 2. Traverse the neighborhood to find closest modules with the highest IDF-values

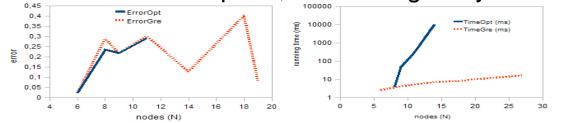


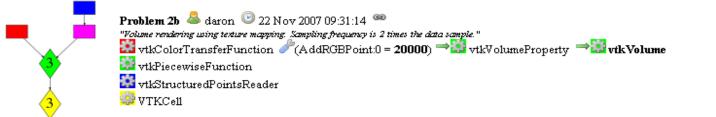
# Selection strategy 2: IDF

• Find a set of representative by choosing the modules with the highest IDF values.









## Selection strategy 3: Grouping

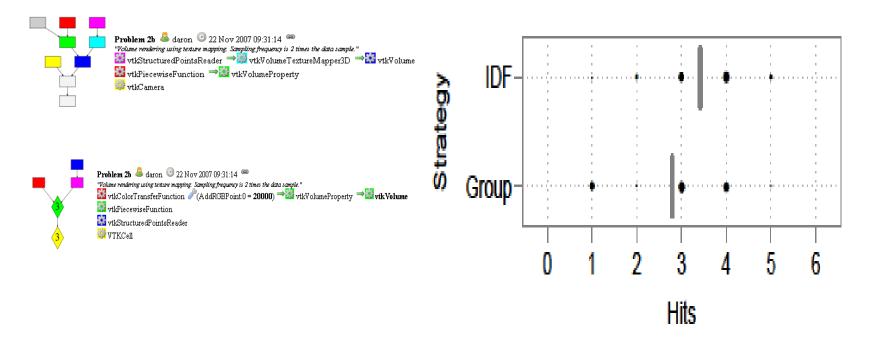
- Find co-occuring modules as they correspond to a specific functionality or semantic entity.
- Jaccard distance:

$$MScore \quad (M_{n}) = \frac{\sum_{m_{i},m_{j} \in M_{n}} dist (m_{i}, m_{j})}{|M_{n}|}$$
$$GScore \quad (G) = \sum_{M_{i} \in G} MScore \quad (M_{i})$$

• Problem: NP-complete, we use a greedy version:








#### Evaluation: Important modules – compared to strategies

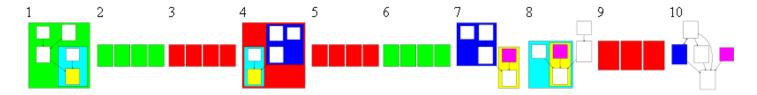
Choose the six most important modules in the workflow.

ΕU

#### Strategy Hits



### Selection strategy 4: Difference highlighting


- Display differences and similarities among workflows in a result set
- Identify the most prominant differences



- 9 x 💁 vtkVolumeRayCastMapper vtkVolumeRayCastCompositeFunction vtkPiecewiseFunction vtkVolumeProperty ... + 7
- 3 x vtkVolumeTextureMapper3D vtkPiecewiseFunction vtkVolumeProperty vtkVolume ... + 2
- 4 x 🎴 vtkCamera VTKCell vtkRenderer

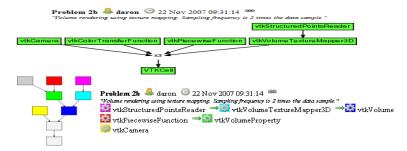
3 x 🞴 vtkCamera

3 x 💶 vtkCamera CellLocation VTKCell vtkRenderer





#### **Snippet presentation**

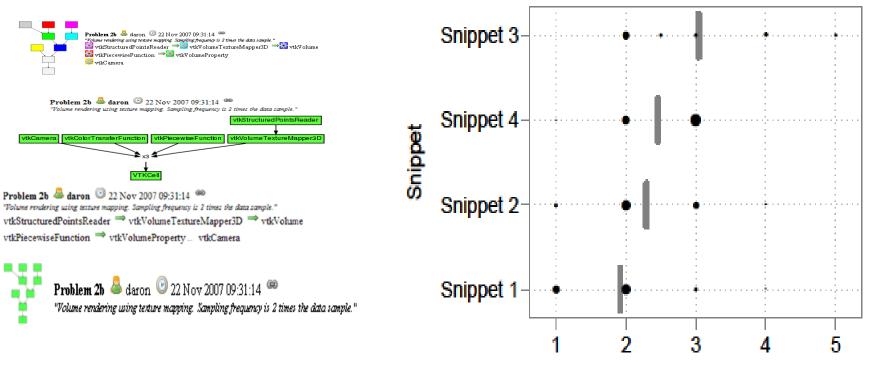

Independent of selection strategy there are several options for presentation

-Text-based

-Dynamic image

-Legend

Problem 2b → daron <sup>©</sup> 22 Nov 2007 09:31:14 <sup>®®</sup> "Volume rendering using texture mapping. Sampling frequency is 2 times the data sample." vtkStructuredPointsReader → vtkVolumeTextureMapper3D → vtkVolume vtkPiecewiseFunction → vtkVolumeProperty... vtkCamera

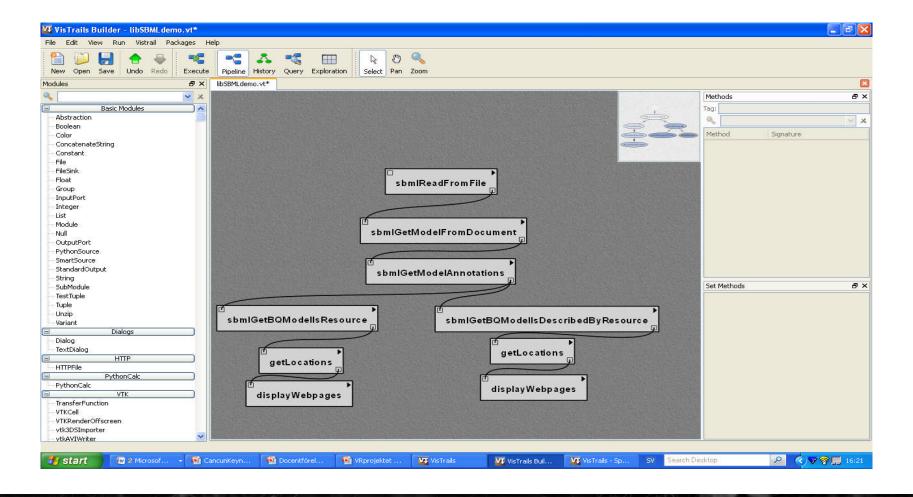





#### Evaluation: Important features

Part3: Score workflow snippets

#### **Snippet Grades**



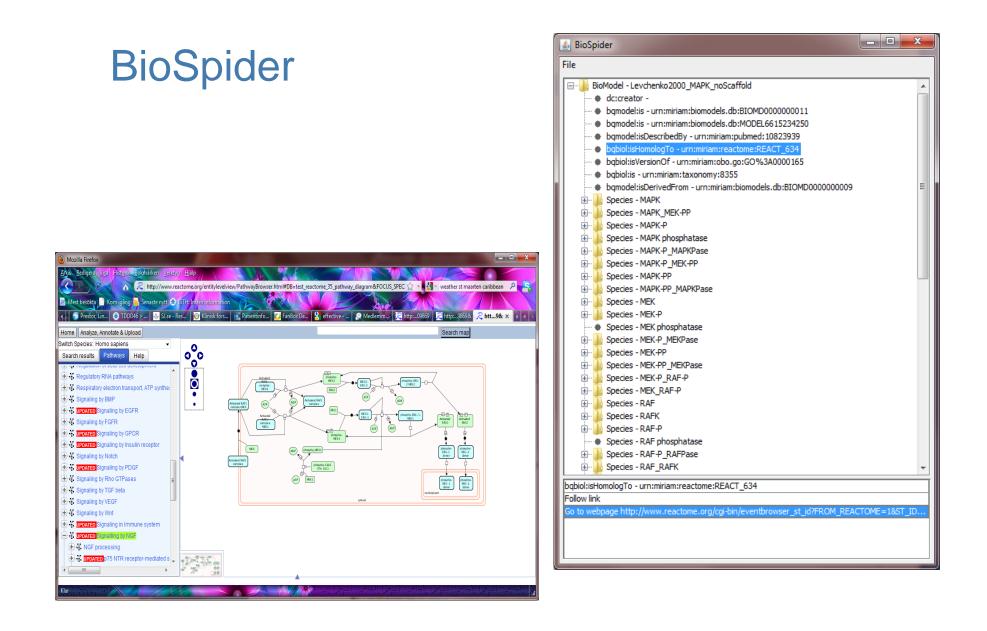

Grade

27

LiU

### Scientific workflows for exploring Bioinformatics Web sources




28

LAJ ICAL

## BioSpider

| L. | D Pie       | Model - Yildirim2003_Lac_Operon                               |   |  |  |  |  |
|----|-------------|---------------------------------------------------------------|---|--|--|--|--|
| 15 |             | dc:creator -                                                  | 1 |  |  |  |  |
| L  |             | decreator -                                                   |   |  |  |  |  |
| L  | detected    |                                                               |   |  |  |  |  |
| L  |             | bamodel:is - urn:miriam:biomodels.db:MODEL6624248569          |   |  |  |  |  |
| L  |             | bamodel:isDescribedBy - urn:miriam:pubmed: 12719218           |   |  |  |  |  |
| L  |             | bqbiol:isVersionOf - urn:miriam:obo.go:GO%3A0045990           |   |  |  |  |  |
| L  |             | bqbiol:is - urn:miriam:taxonomy:562                           |   |  |  |  |  |
| L  |             | Species - mRNA                                                |   |  |  |  |  |
| L  |             | Species - Betagalactosidase                                   |   |  |  |  |  |
| L  |             | Species - allolactose                                         |   |  |  |  |  |
| L  | T 25        | Species - lactose internal                                    |   |  |  |  |  |
| L  | - T 25      | Species - permease                                            |   |  |  |  |  |
| L  |             | Species - PartialmRNA                                         |   |  |  |  |  |
| L  |             | Species - PartialBetagalactosidase                            | = |  |  |  |  |
| L  | •           | Species - PartialPermease                                     |   |  |  |  |  |
| L  | ÷           | Species - External_Lactose                                    |   |  |  |  |  |
| L  | ÷           | Reaction - Basal_mRNA_Synthesis                               |   |  |  |  |  |
| L  | ÷. 🚺        | Reaction - mRNA_Degradation                                   |   |  |  |  |  |
| L  | 👘 · · 🚺     | Reaction - allolactose_controlled_mRNA_synthesis              |   |  |  |  |  |
| L  | 👘 · · 🚺     | Reaction - allolactose_controlled_partial_mRNA_synthesis      |   |  |  |  |  |
| L  | 😐 🕀 🕕       | Reaction - Beta_galactosidase_Degredation                     |   |  |  |  |  |
| L  | 😐 🕀 🕕       | Reaction - Beta_galactosidase_synthesis                       |   |  |  |  |  |
| L  | 😐 🕀 📗       | Reaction - Partial_Beta_galactosidase_synthesis               |   |  |  |  |  |
| L  | 😐 🕕 📗       | Reaction - Basal_Allolactose_Degredation                      |   |  |  |  |  |
|    |             | Reaction - Betagalactosidase_mediated_Allolactose_Degredation |   |  |  |  |  |
|    |             | Reaction - Beta_galactosidase_reaction                        |   |  |  |  |  |
|    |             | Reaction - lactose_degredation                                |   |  |  |  |  |
|    |             | Reaction - Lactose_transport_out                              |   |  |  |  |  |
|    |             | Reaction - Lactose_transport_in                               |   |  |  |  |  |
| L  | 🔁 📗         | Reaction - permease_degredation                               | - |  |  |  |  |
| Th | his table v | will list all actions for the currently selected node         | _ |  |  |  |  |

LiU



LiU

HE LITICAL

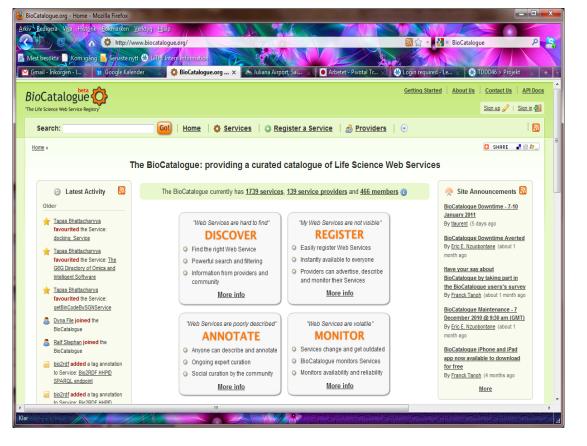
#### Content of this presentation:

- Two scientific application areas
  - Provenance/Scientific workflows
  - Bioinformatics
- Three different aspects
  - Interfaces for exploration
  - Seamless data integration

31

Effective data exploration

- The BioSpider allows:
  - Easy integration of data from various web sources
  - Tracking of data provenance
  - Little programming knowledge of the end user
- However,
  - Each new object type (database) must be added as a new module
  - Requires large programming skills
- How can we improve?


LiU

| MIRIAM Resources - Mozi                                                                                         | lla Firefox                        |                                          |                                                                                                                                                       |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Arkiv Redigera Visa Hist                                                                                        | orik <u>B</u> okmärken <u>V</u> er | ktyg <u>Hj</u> älp //                    |                                                                                                                                                       |  |  |  |
| Ob. all                                                                                                         | http://www                         | v.ebi.ac.uk/miriam/r                     | nain/datatypes/MIR:00000018 🔊 🖓 - MIRIAM 🔎                                                                                                            |  |  |  |
|                                                                                                                 |                                    | 18 18 18 18 18 18 18 18 18 18 18 18 18 1 |                                                                                                                                                       |  |  |  |
| Mest besökta 📄 Kom ig                                                                                           | ång 🔊 Senaste nytt 🛛               | 😸 LiTH: Intern info                      | mation 5                                                                                                                                              |  |  |  |
| 🔀 Gmail - Inkorgen - I 🗙                                                                                        | 31 Google Kalende                  | ar 🛛 🖄 MIR                               | IAM Resources 🗴 📥 Juliana Airport, Sai 🗴 💽 Arbetet - Pivotal Tr 🗴 🚷 Login required - Le 🗙 🚯 TDDD46 > Projekt 🛛 🔺                                      |  |  |  |
| MBL-EBI                                                                                                         | All Databases                      | Enter Tex                                | rt Haro                                                                                                                                               |  |  |  |
| )atabases Tools                                                                                                 |                                    | raining Indus                            |                                                                                                                                                       |  |  |  |
|                                                                                                                 |                                    |                                          |                                                                                                                                                       |  |  |  |
| IDIAN                                                                                                           |                                    |                                          | > Research > MIRIAM Resources                                                                                                                         |  |  |  |
| IRIAM                                                                                                           | Data type: Read                    | tome                                     |                                                                                                                                                       |  |  |  |
| Browse                                                                                                          |                                    |                                          |                                                                                                                                                       |  |  |  |
| Search                                                                                                          | General Tag                        | s Example Usage                          | Web Services                                                                                                                                          |  |  |  |
| ags                                                                                                             | General information                | n about the data typ                     | e                                                                                                                                                     |  |  |  |
| Query services                                                                                                  |                                    |                                          | Name                                                                                                                                                  |  |  |  |
| Submit new                                                                                                      | Identifier                         |                                          | MIR:00000018                                                                                                                                          |  |  |  |
| xport                                                                                                           | Name                               |                                          | Reactome                                                                                                                                              |  |  |  |
| lign In                                                                                                         | Manio                              |                                          | URIS                                                                                                                                                  |  |  |  |
|                                                                                                                 | MIRIAM URN                         |                                          | um:miriam:reactome                                                                                                                                    |  |  |  |
| Veb Services                                                                                                    | Deprecated                         |                                          | http://www.reactome.org/                                                                                                                              |  |  |  |
| ocuments                                                                                                        |                                    |                                          | - Information                                                                                                                                         |  |  |  |
|                                                                                                                 | Definition                         |                                          | The Reactome project is a collaboration to develop a curated resource of core pathways and reactions in human biology.                                |  |  |  |
| MIRIAM Standard                                                                                                 | Identifier Pattern                 |                                          | ^REACT_\d+(\\\d+)?\$                                                                                                                                  |  |  |  |
| ··FAQ                                                                                                           |                                    |                                          | Physical Locations                                                                                                                                    |  |  |  |
| Documentation                                                                                                   |                                    | Access URL                               | http://www.reactome.org/cgi-bin/eventbrowser_st_id?FROM_REACTOME=1&ST_ID=\$id [Example: <u>REACT_1590</u> 例]                                          |  |  |  |
| "News 🔊                                                                                                         | Resource                           | Website                                  | http://www.reactome.org/                                                                                                                              |  |  |  |
| BioModels.net                                                                                                   | MIR:00100026                       | Description<br>Institution               | Reactome, a curated knowledgebase of biological pathways<br>Cold Spring Harbor Laboratory and European Bioinformatics Institute, USA / United Kingdom |  |  |  |
| Qualifiers                                                                                                      |                                    | Institution                              | References                                                                                                                                            |  |  |  |
|                                                                                                                 | URL(s)                             |                                          | Http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-view+MedlineFull+[medline-PMID:15608231]                                                                   |  |  |  |
| IIRIAM on SourceForge                                                                                           | UNE(3)                             |                                          | Miscellaneous                                                                                                                                         |  |  |  |
|                                                                                                                 | Date of creation                   |                                          | 2006-08-14 19:38:06 GMT                                                                                                                               |  |  |  |
|                                                                                                                 | Date of last modific               | ation                                    | 2009-04-21 15:49:13 GMT                                                                                                                               |  |  |  |
| Support                                                                                                         |                                    |                                          |                                                                                                                                                       |  |  |  |
| Contact                                                                                                         | Go back to the lis                 | t of data types                          | Suggest modifications to this data type                                                                                                               |  |  |  |
|                                                                                                                 |                                    |                                          |                                                                                                                                                       |  |  |  |
|                                                                                                                 | - 1- 14                            |                                          |                                                                                                                                                       |  |  |  |
| and the state of the second |                                    |                                          |                                                                                                                                                       |  |  |  |

33

Real Hill Proce

- Using available resources
  - MIRIAM
  - BioCatalogue

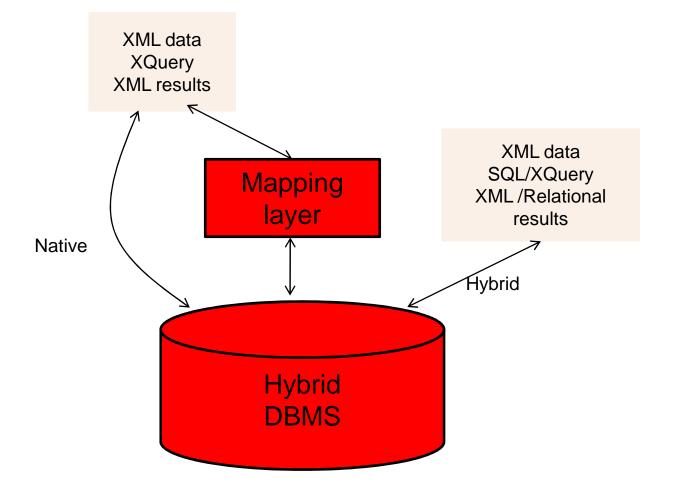




- Using available resources
  - MIRIAM
  - BioCatalogue
- Allowing users to add new methods and knowledge

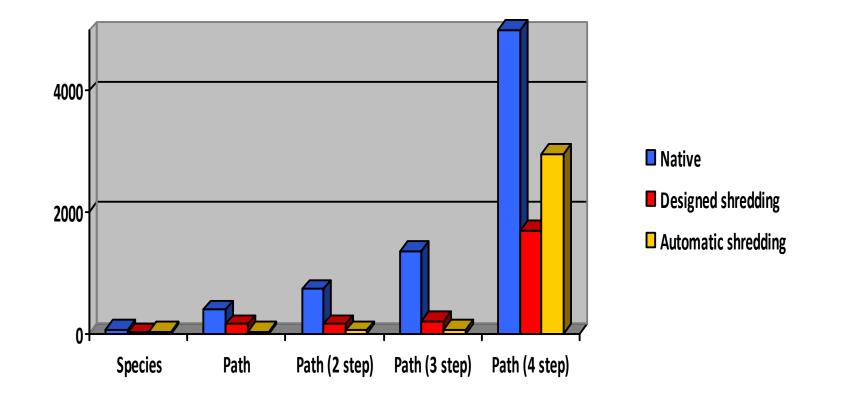


#### Content of this presentation:


- Two scientific application areas
  - Provenance/Scientific workflows
  - Bioinformatics
- Three different aspects
  - Interfaces for exploration
  - Seamless data integration
  - Effective data exploration

#### Effective data exploration

- Complex data structure often graph structure
- Need for effective exploration methods
- Data often represented as XML or RDF




#### Hybrid XML Storage





## Efficiency: Increasing query complexity





## Tool development: HShreX

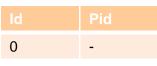
| Schema Tree                        | XML Schema                                 | About Mappings      | Relational Scher            | Mapping Edito     | or Query             |                       |            |
|------------------------------------|--------------------------------------------|---------------------|-----------------------------|-------------------|----------------------|-----------------------|------------|
| movies                             | movies                                     |                     |                             |                   |                      |                       |            |
| movie<br>tite<br>year<br>goodMovie | movies_movie                               |                     |                             |                   |                      |                       |            |
|                                    | Field Name<br>shrex_id                     | SQL Type<br>SQL_INT | SQL Type L<br>default value |                   | isPrimaryKey<br>true | isForeignKey<br>false | refTableNa |
|                                    | shrex_pid                                  | SQL_INT             | default value               |                   | false                | true                  | movies     |
|                                    | goodMovie                                  | SQL_STRING          | default value               |                   | false                | false                 |            |
|                                    | title                                      | SQL_STRING          | default value               |                   | false                | false                 |            |
|                                    | year                                       | SQL_STRING          | default value               | false             | false                | false                 |            |
|                                    |                                            |                     |                             |                   |                      |                       |            |
| Starting parse of schema "option   | al_string_attribute<br>ing_attribute-1.xsc |                     | an take a while f           | or large and/or ( | complicated s        | chemas                |            |

## Working with HShreX:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="<u>http://www.w3.org/2001/XMLSchema</u>" xmlns:shrex="<u>http://www.cse.ogi.edu/shrex</u>">

<xs:element name="families"> <xs:complexType> <xs:sequence maxOccurs="unbounded"> <xs:element name="family" type="familyType"/> </xs:sequence> </xs:complexType> </xs:element>


<xs:complexType name="familyType">

<xs:sequence>

```
<xs:complexType name="parentType">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="job" type="xs:string"/>
</xs:sequence>
</xs:complexType>
```

<xs:complexType name="childType"> <xs:sequence> <xs:element name="name" type="xs:string"/> <xs:element name="school" type="xs:string"/> </xs:sequence> </xs:complexType>

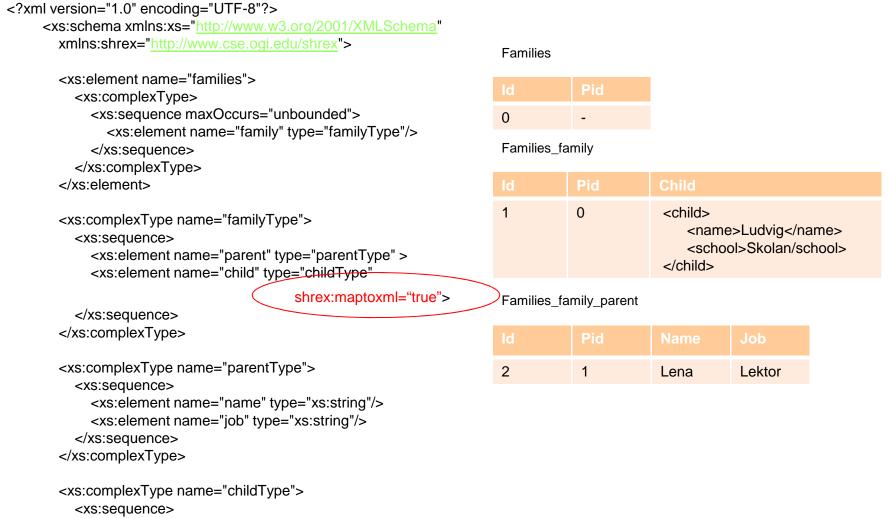
#### Families



#### Families\_family

| ld | Pid |
|----|-----|
| 1  | 0   |

Families\_family\_parent

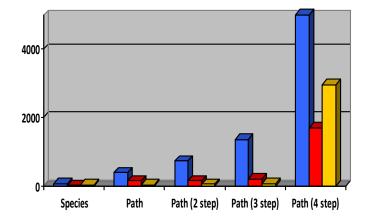

| ld | Pid | Name | Job    |
|----|-----|------|--------|
| 2  | 1   | Lena | Lektor |

Families\_family\_child

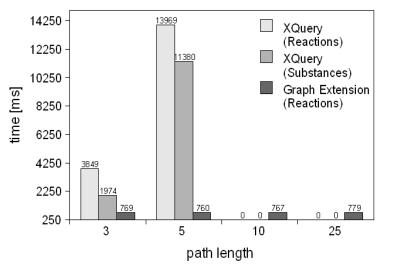
| ld | Pid | Name   | School |
|----|-----|--------|--------|
| 3  | 1   | Ludvig | Skolan |



## Working with HShreX:



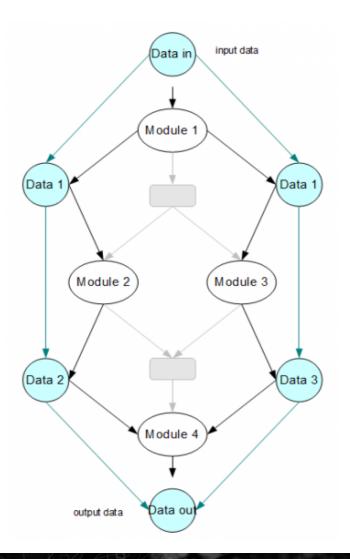

- <xs:element name="name" type="xs:string"/> <xs:element name="school" type="xs:string"/>
- <xs:element name="school


#### Guidelines for Shredding XML:

- Keep together what naturally belong together
- Do not shred parts of the XML where the schema allows large variation
- Take variations of the actual data into account
- Shred elements that are critical for performance
- Prefer the representation that is required for query results

#### Efficiency for graph queries








t page (t ) feet L(t) teet

#### Effective querying for workflows

- Tool independent
  - capture all features of OPM
- Complex queries on
  - structure,
  - versions,
  - subworkflow
  - similarity
- Infrastructure for evaluation



45

LiU

## Collaborators

Bioinformatrics standards: Patrick Lambrix, He Tan
Workflow snippets: Tommy Ellkvist, Juliana Freire, Lauro Didier Linz
BioSpider: Mikael Åsberg, Rickard Pettersson
HShreX and hybrid storage: Mikael Åsberg, David Hall, Valentina Ivanova, Juliana Freire
Efficient storage for workflows: Valentina Ivanova, Juliana Freire

## Thanks!



LiU



## And A CONTRACT Linköping University expanding reality

www.liu.se