# Geospatial Decision Making in the Semantic Web

Patrick Maué (IFGI) Dumitru Roman (STI)

GEOWS 2009 February 1<sup>st</sup>, 2009 - Cancun, Mexico

Distance: 8618 kilometers or 5355 miles or 78541 football fields

© Google



# /Introduction We are: STI International

GEOWS.2009

Semantic Technologies Institute International

#### Research in:

- Knowledge representation
- Semantic Web
- Service-Oriented Computing



#### /Introduction

#### We are: IFGI



- Institute for Geoinformatics at University of Münster, Germany
- Research in
  - Semantic Interoperability
  - Spatial Assistance Systems
  - Sensor Web and Geoprocessing
  - Environmental Measurement and Spatio-temporal Modeling



**ifgi** Institute for Geoinformatics University of Münster

# /Introduction Background: the SWING project





Semantic Web Services Interoperability for Geospatial Decision Making

# /Introduction Background: the SWING project



- Presented results mostly outcome of this project
- 3 Years until 02.2009
- Seven Partners, including users (BRGM), companies (ERDAS) and research (DERI, JSI, SINTEF)
- BRGM Use Cases further discussed later
- http://www.swing-project.org (with all deliverables and publications)

/Introduction







# /Introduction Tutorial Objective



- Demonstrating the SWING framework
- Geospatial Semantic Web
  - Discussing Potential Applications
  - Showing potential benefits
- Raise your interest

/Introduction

#### **Overview**



#### Spatial Data Infrastructures

- Semantic Web Services
- Bridging the gap: Semantic Annotations
- SWING: use cases
- SWING: Developed Tools
- Demonstration (Videos)
- Hands-On Session



# **Spatial Data Infrastructures**

Patrick Maué (IFGI)

GEOWS 2009 February 1<sup>st</sup>, 2009 - Cancun, Mexico

#### **Overview**



- Introducing Spatial Data Infrastructures
- The European INSPIRE Directive
- SDI Standards
- Examples of standard Web Services
- SDI Applications: Geospatial Decision-Making
- Web Service Compositions for Complex Tasks
- Contemporary Problems of SDIs



#### What is SDI?



- Transition from desktop GIS to distributed services
- Why we need SDI?
  - Keeping data up-to-date
  - Discovery and Evaluation (cross-country)
  - Resource-intensive
  - Billing and Security

### What is SDI?



- Transition from desktop GIS to distributed services
- Why we need SDI?
  - Keeping data up-to-date
  - Discovery and Evaluation (cross-country)
  - Resource-intensive
  - Billing and Security
- SDI rebuild all functionality of GIS
- SDI framework provides basis for
  - Finding and Accessing spatial data
  - Describing and Evaluating spatial data
- Applications built on top of SDIs

### **INSPIRE in Europe**



- Different data formats and quality standards across national borders
- Some Principles (Excerpt)
  - It must be possible to combine spatial data from different sources across the EU seamlessly and share them between several users and applications.
  - It should be easy to discover available spatial data, evaluate their fitness for purpose and know the conditions applicable to their use.
- Harmonisation (Standards!) required



#### **Standards in SDIs**



- Open Geospatial Consortium (OGC)
- Currently 372 Members (Companies, Universities, …)
- Provides open standards
- Implementation guidelines for all SDI components
  - Geospatial Web Services
  - Geospatial Data
- OGC conformal Web Services can interoperate, regardless the intended applications and the served data.



#### **OGC Standards: OWS Common**



- OGC Conformal Web Service specifies
  - Access over HTTP (with KVP-encoding)
  - Minimum set of metadata
  - The getCapabilities operation
  - Exceptions handling
  - ...
- Normative reference for all OGC standards



#### **OGC Standards: WFS**



- Web Feature Service Interface
  - Specifies interface to retrieve Geographic Features
  - Data coming, for example, as Points, Lines, and Polygons
  - Features have Geometries and additional attributes
  - Data model specified in Feature Type Schema



#### / Standards



#### **WFS output example**

Feature Type Zico\_region

```
<element name="Zico region"</pre>
         type="con:Zico regionType"
         substitutionGroup="gml: Feature" />
<complexType name="Zico regionType">
  <complexContent>
    <extension base="gml:AbstractFeatureType">
      <sequence>
        <element name="msGeometry" type="gml:GeometryPropertyType"/>
        <element name="REGIONAL" type="string"/>
        <element name="NATIONAL" type="string"/>
        <element name="LIBELLE" type="string"/>
        <element name="TYPE" type="string"/>
        <element name="LA MESURE" type="string"/>
      </sequence>
    </extension>
  </complexContent>
</complexType>
```

#### / Standards

#### **OGC Standards: WFS**



- Web Feature Service Interface
  - Specifies interface to retrieve Geographic Features
  - Data coming, for example, as Points, Lines, and Polygons
  - Features have Geometries and additional attributes
  - Data model specified in Feature Type Schema
  - Geographic Features with Geometry and arbitrary attributes
- WFS data encoded in OGC GML
  - XML-dialect used to encode feature-based geospatial data
  - Adapted ISO standard
- + WCS, WCTS, ...
  - The storage layer of traditional GIS



#### **OGC Standards: WPS and WMS**



- Web Processing Service (WPS) Interface
  - Provides executable processes
  - No restrictions on input and output data
  - Takes role of GIS processing component



#### **OGC Standards: WPS and WMS**

- Web Processing Service (WPS) Interface
  - Provides executable processes
  - No restrictions on input and output data
  - Takes role of GIS processing component

#### Web Mapping Service (WMS)

- Visualisation of geospatial data
- Render images in common formats
- Can be directly integrated into websites





#### **Examples**



- Requesting a WFS from the Browser
- Requesting a WFS from generic GIS client

## **Geospatial Decision-Making**



- Space as factor for decision making
- Examples: landfills, power plants, route planning
- Is a multi-criteria analysis looking at
  - Constraints (e.g. Important Bird Areas)
  - Requirements (e.g. water access)
- Requires
  - Acquisition of needed data
  - Preparation of data
  - Running the analysis
  - Rendering results for domain experts



/ Applications

### **Constraints**

## @www.demis.hl © BRGM 2007 8 ZNIEFF I ZNIEFF II æ ZICO æ Regions Departments

GEOWS.2009

/ Applications

### Requirements







## **Workflows**

GEOWS.2009

- Composing atomic Web Services
- Result itself a complex Web Service
- Workflow Engines
- Workflow Modeling Approaches
  - XML-based (BPEL, Wf-XML)
  - UML-based (Activity Diagrams)
  - ASM or Petri-Nets



#### / Workflows

#### **Workflow example**





in soa#AggregateRequest withGrounding \_"http://set.sintef.no:8080/
(Aggregation/aggregate/aggregateRequest)"

in wfs#Query
in ogc#Intersects
in swi#depproductionconsumption
in gml#GeometryPropertyType

out wfs#FeatureCollection

//out sso#MultiplyResponse withGrounding \_"http://localhost:8081
(Support/multiply/multiplyResponse)"

out sso#MultiplyResponse withGrounding \_"http://set.sintef.no:80 (Support/multiply/multiplyResponse)"

out brgm#SocioEconomicConstantsResponse withGrounding \_"http://s
wsdl#wsdl.interfaceMessageReference(SocioEconomicConstants/getValueByK
 out ins#INSEEgetPopulationByDepartmentResponse withGrounding \_"htt
(INSEE/getPopulationFromRegion/getPopulationFromRegionResponse)"

out soa#AggregateResponse

controlled oasm#ControlState

transitionRules "http://www.example.org/TestCreateBoth UoM#transi

do

add(\_#1[gml#coordinates hasValue ?coord, gml#srsName add(\_#2[ogc#propertyName hasValue "qua:msGeometry"] : add(\_#3[ogc#arguments hasValue \_#1, ogc#refersTo has' add(\_#4[ogc#encodes hasValue \_#3] memberOf ogc#Filte add(\_#5[wfs#filter hasValue \_#4,wfs#typeName hasValue add(\_#6[wfs#query hasValue \_#5,wfs#service hasValue

virtual#GetDepartmentFeature) endForall

delete(?controlstate[oasm#value hasValue oasm#InitialState])
 add(?controlstate[oasm#value hasValue oasm#DummyState])
endForall

/ Workflows

### **Workflows**



- Composing atomic Web Services
- Result itself a complex Web Service
- Workflow Engines
- Workflow Standards
  - XML based (BPEL, Wf-XML)
  - ASM or Petri-Nets



## **Open Issues of SDIs**

- Harmonization in between Standards
- Security and licensing
- Complexity & Performance
- Semantic Interoperability



### **Semantic Interoperability**



```
<element name="Zico region"</pre>
         type="con:Zico regionType"
         substitutionGroup="gml: Feature" />
<complexType name="Zico regionType">
  <complexContent>
    <extension base="gml:AbstractFeatureType">
      <sequence>
        <element name="msGeometry" type="gml:GeometryPropertyType"/>
        <element name="REGIONAL" type="string"/>
        <element name="NATIONAL" type="string"/>
        <element name="LIBELLE" type="string"/>
        <element name="TYPE" type="string"/>
        <element name="LA MESURE" type="string"/>
      </sequence>
    </extension>
  </complexContent>
```

</complexType>

/Introduction

#### Overview



- Spatial Data Infrastructures
- Semantic Web Services
- Bridging the gap: Semantic Annotations
- SWING: use cases
- SWING: Developed Tools
- Demonstration (Videos)
- Hands-On Session

# Semantic Web Services (SWS)

GEOWS 2009 February 1<sup>st</sup>, 2009 - Cancun, Mexico



- Tasks to be automated in SWS
- Ontologies and Web services: the WSMO approach
- WSML the language for formalizing WSMO
- Web Service Discovery



GEOWS.2

### SWS – Tasks to be Automated




# The WSMO Approach to SWS



Objectives that a client may have when consulting a Web Service



# What is an **ontology**?



- Formal, Meaning of ontology is unambiguous • • Avoids misunderstanding Specification using formal language explicit specification of • Enables reasoning: making implicit information explicit Hampers consensus a shared conceptualization of a domain. Make domain assumptions explicit • - For reasoning - For clarifying understanding of domain Minimal ontological commitment – Too much explicit => no consensus • Domain: specific part of the world – Too little explicit => ontology unusable - Minimal ontological commitment = "make as little Conceptualization as explicit as possible, while keeping ontology - Forming idea of domain in the minds of people useful"
  - Shared among its users
  - Facilitates accepting the ontology

## **Elements of Ontologies**



Concept conceptual entity of the domain

Property

attribute describing a concept

Relation

relationship between concepts or properties

## Axiom

coherency description between Concepts / Properties / Relations via logical expressions

Instance individual in the domain



holds(Professor, Lecture) =>
Lecture.topic = Professor.researchField

Ann memberOf student name = Ann Lee studentID = 12345

## Wide Variety of Languages for Specifying Ontologies



• Graphical: Semantic Networks, Topic Maps, UML, RDF



• Logical: Description Logics, First Order Logic, Rules, Conceptual Graphs

| DL Syntax                          | Example          |
|------------------------------------|------------------|
| $C_1 \sqcap \ldots \sqcap C_n$     | Human ⊓ Male     |
| $C_1 \sqcup \ldots \sqcup C_n$     | Doctor ⊔ Lawyer  |
| $\neg C$                           | ¬Male            |
| $\{x_1\}\sqcup\ldots\sqcup\{x_n\}$ | {john} ⊔ {mary}  |
| $\forall P.C$                      | ∀hasChild.Doctor |
| $\exists P.C$                      | ∃hasChild.Lawyer |
| $\leqslant nP$                     | ≤1hasChild       |
| $\geqslant nP$                     | ≥2hasChild       |

| D d 'l'                                                                |                                      |                                       |
|------------------------------------------------------------------------|--------------------------------------|---------------------------------------|
| Drotners are sidlings                                                  | sibling(X, Y) :- par                 | cent_child(Z, X), parent_child(Z, Y). |
| $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$             | parent_child(X, Y) :- fat            | cher_child(X, Y).                     |
|                                                                        | <pre>parent_child(X, Y) :- mot</pre> | cher_child(X, Y).                     |
| "Sibling" is symmetric                                                 | mother_child(trude, sally            | 7).                                   |
| d m a Cilling (m a) () Cilling (a m)                                   | father_child(tom, sally).            |                                       |
| $\forall x, y \ Sidling(x, y) \Leftrightarrow Sidling(y, x).$          | father child(mike. tom).             | Person: Tom Expr Believe Thme         |
| One's mother is one's female parent                                    |                                      |                                       |
|                                                                        |                                      | Proposition:                          |
| $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent$ | t(x,y)).                             | Person: Mary KExpr Want Thme          |
| A first cousin is a child of a parent's sibling                        |                                      | ¥                                     |
|                                                                        |                                      |                                       |
|                                                                        | $t(p,x) \land Sibling(ps,p) \land$   | T + (Agnt) + Marry + (Thme) + Sailor  |
| Parent(ps, y)                                                          |                                      |                                       |

## **A Conceptual Model for Web Services**





Interface

Orchestration

## Web Service Modeling Language (WSML)



- Aim to provide a language (or a set of interoperable languages) for representing the elements of WSMO: Ontologies, Web services, Goals, Mediators
- For ontologies, WSML provides a formal language based on:
  - Description Logics
  - Logic Programming
  - First-Order Logic

– F-Logic



WSML is a family of languages layered on top of XML and RDF

# **WSML in SWING**

## Ontologies

- GeographicDatatypes, GeospatialOperations, QuarriesOntology, MeasurementOntology, WFS, Annotation, etc.
- Web Services
  - Define functionalities of WFS and WPS Web Services
- Goals
  - Define WFS and WPS Goals
- Annotations
  - Encode annotations coming from the annotation tool



```
GEOWS.2009
```

```
🔒 UnionWPS.wsml 🔀
                                                                                    wsmlVariant "http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
                                                                                   mamespace { "http://swing-project.org#UnionWPS",
                                                                                            GeoTypes "http://swing-project.org#GeographicDatatypes",
                                                                                            GeoOp ____Thttp://swing-project.org#GeospatialOperations"
                                                                                   webService UnionWPS
                                                                                    importsOntology {GeoOp#GeospatialOperations, GeoTypes#GeographicDatatypes}
                                                                                   capability UnionWPSCapability
🔒 GeographicDatatypes.wsml 🔀
                                                                                    sharedVariables { ?a, ?b, ?refsys }
   wsmlVariant "http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
                                                                                   precondition UnionWPSPrecondition definedBy
 Gnamespace {    "http://swing-project.org#GeographicDatatypes"
                                                                                        ?a[GeoTypes#hasSRS hasValue ?refsys] member0f GeoTypes#GM Object and
    }
                                                                                        2b[GeoTypes#hasSRS hasValue ?refsys] member0f GeoTypes#GM Object and
                                                                                        ?refsys memberOf GeoTypes#projSRS.
 Gontology GeographicDatatypes
                                                                                   postcondition UnionWPSPostcondition definedBy
                                                                                        ?c memberOf GeoTypes#Polygon and
 □concept GM Object
                                                                                        ?c[GeoTypes#hasSRS hasValue ?refsys] and
  hasSRS impliesType SRS
                                                                                        GeoOp#union(?a, ?b, ?c).
   concept Polygon subConceptOf GM Object
                                                                                  🔒 Goal2.wsml 🙁
                                                                                    wsmlVariant "http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
   concept SRS
                                                                                    Gnamespace { "http://swing-project.org#Goal2"
   concept projSRS subConceptOf SRS
                                                                                         GeoTypes "http://swing-project.org#GeographicDatatypes",
                                                                                         GeoOp "http://swing-project.org#GeospatialOperations" }
   instance gk member0f projSRS
 axiom gm objectDefinition definedBy
                                                                                    ⊖goal Goal2
   ?x[hasSRS hasValue ?srs] implies ?x memberOf GM Object.
                                                                                    importsOntology (GeoOp#GeospatialOperations, GeoTypes#GeographicDatatypes)
                                                                                    capability Goal2Capability
                                                                                    sharedVariables { ?x, ?y }
                                                                                    precondition Goal2Precondition definedBy
                                                                                         ?x[GeoTypes#hasSRS hasValue ?srs] member0f GeoTypes#Polygon and
```

?x[GeoTypes#hasSRS hasValue ?srs] memberOf GeoTypes#Polygon and ?y[GeoTypes#hasSRS hasValue ?srs] memberOf GeoTypes#Polygon and ?srs memberOf GeoTypes#projSRS.



```
🔒 GeographicDatatypes.wsml  
  wsmlVariant "http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
 ł
 ⊖ontology GeographicDatatypes
 ⊖concept GM Object
  hasSRS impliesType SRS
  concept Polygon subConceptOf GM Object
  concept SRS
  concept projSRS subConceptOf SRS
  instance gk member0f projSRS
 axiom gm objectDefinition definedBy
  ?x[hasSRS hasValue ?srs] implies ?x memberOf GM Object.
```



```
🔒 UnionWPS.wsml 🔀
  wsmlVariant "http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
 mamespace {    "http://swing-project.org#UnionWPS",
          GeoTypes "http://swing-project.org#GeographicDatatypes",
          GeoOp "http://swing-project.org#GeospatialOperations"
    }
 ⊖webService UnionWPS
  importsOntology {GeoOp#GeospatialOperations, GeoTypes#GeographicDatatypes}
 capability UnionWPSCapability
  sharedVariables { ?a, ?b, ?refsys }
 precondition UnionWPSPrecondition definedBy
       ?a[GeoTypes#hasSRS hasValue ?refsys] memberOf GeoTypes#GM Object and
       ?b[GeoTypes#hasSRS hasValue ?refsys] memberOf GeoTypes#GM Object and
       ?refsys member0f GeoTypes#projSRS.
 postcondition UnionWPSPostcondition definedBy
       ?c member0f GeoTypes#Polygon and
       ?c[GeoTypes#hasSRS hasValue ?refsys] and
       GeoOp#union(?a, ?b, ?c).
```



```
🔒 Goal2.wsml  🎇
  wsmlVariant "http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"

mamespace {    "http://swing-project.org#Goal2"

       GeoTypes "http://swing-project.org#GeographicDatatypes",
       GeoOp "http://swing-project.org#GeospatialOperations" }
 ⊖goal Goal2
  importsOntology {GeoOp#GeospatialOperations, GeoTypes#GeographicDatatypes}
 capability Goal2Capability
  sharedVariables { ?x, ?v }
 precondition Goal2Precondition definedBy
       ?x[GeoTypes#hasSRS hasValue ?srs] member0f GeoTypes#Polygon and
       ?v[GeoTypes#hasSRS hasValue ?srs] memberOf GeoTypes#Polygon and
       ?srs member0f GeoTypes#projSRS.
 postcondition Goal2Postcondition definedBy
       ?z member0f ?outputType and
      GeoOp#overlay(?x, ?v, ?z).
```

## **Web Service Discovery**



- Functionality
  - Identify possible web services W which are able to provide the requested service S for its clients
- An important issue …
  - "being able to provide a service" has to be determined based on given descriptions only (WS, Goal, Ontos)
  - Discovery can *only be as good* as these descriptions
    - *Very detailed WS descriptions*: are precise, enable highly accurate results, are more difficult to provide; in general, requires interaction with the provider (outside the pure logics framework)
    - Less detailed WS descriptions: are easy to provide for humans, but usually less precise and provide less accurate results

Possible Accuracy

- Support a wide-variety of applications wrt. needed accuracy
  - Basic possibilities for the description of web services:
    - Syntactic approaches

WSML Discovery

- Keyword-based search, natural language processing techniques, Controlled vocabularies
- Lightweight semantic approaches
  - Ontologies, What does W provide (not how)?, Coarse-grained semantic description of a service  $\rightarrow$  WS as a set of objects
- Heavyweight semantic approaches
  - Describes the service capability in detail, Pre/Post-Cond, takes "inout" relationship into account, Fine-grained web service description

 $\rightarrow$  WS as a set of state-changes

 $\rightarrow$  WS as a set of keywords

GEOWS.2

\_evel of Abstraction

# **WSML Discovery**



- Responsible to find appropriate Web Services to achieve a goal
- Current discovery component is organized as a framework performing discovery in two steps:
  - 1. (optional) keyword-based matching
  - 2. discovery based on either simple or rich descriptions of services
    - Simple Descriptions → "lightweight" discovery
      - take into account postconditions and effects
      - WSML-DL: use concept subsumption; possible matches: exact, plugin, subsume, intersection
      - WSML-Flight / WSML-Rule: use query containment; possible matches: exact, plugin, subsume
    - Rich Descriptions → "heavyweight" discovery
      - take into account preconditions and assumptions, postconditions and effects, and the relation inbetween
      - WSML-Flight / WSML-Rule: use query containment; possible match: extended plug-in match

## **Discovery in SWING - Example**



| 🔒 Goal2.wsml 🛛                                                                                                                                               |                                                                                                                                           |                                        | - [                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|
| <pre>wsmlVariant _"http://www.wsmo<br/>Gnamespace { _"http://swing-pr<br/>,<br/>GeoTypes _"http://swing-pro<br/>GeoOp _"http://swing-pro</pre>               | .org/wsml/wsml-syntax/wsml-flight"<br>oject.org#Goal2"<br>project.org#GeographicDatatypes",<br>ject.org#GeospatialOperations" }           |                                        |                                        |
| ⊖ <b>goal</b> Goal2                                                                                                                                          |                                                                                                                                           |                                        |                                        |
| importsOntology (GeoOp#Geospa                                                                                                                                | tialOperations, GeoTypes#GeographicDatatypes}                                                                                             |                                        |                                        |
| ⊖ <b>capability</b> Goal2Capability                                                                                                                          |                                                                                                                                           |                                        |                                        |
| <pre>sharedVariables { ?x, ?y }</pre>                                                                                                                        |                                                                                                                                           |                                        | ~                                      |
| <                                                                                                                                                            |                                                                                                                                           |                                        | >                                      |
|                                                                                                                                                              |                                                                                                                                           |                                        |                                        |
| <pre>wsmlVariant _"http://www.wsmo<br/>namespace { _"http://swing-pr<br/>GeoTypes _"http://swin<br/>GeoOp _"http://swin<br/>}<br/>@webService UnionWPS</pre> | .org/wsml/wsml-syntax/wsml-flight"<br>oject.org#UnionWPS",<br>ng-project.org#GeographicDatatypes",<br>g-project.org#GeospatialOperations" |                                        |                                        |
| <b>importsOntology</b> {GeoOp#Geospa<br>⊖c <b>apability</b> UnionWPSCapability                                                                               | tialOperations, GeoTypes#GeographicDatatypes)                                                                                             |                                        |                                        |
| sharedVariables { ?a, ?b, ?re                                                                                                                                | fsys )                                                                                                                                    |                                        | ~                                      |
| <                                                                                                                                                            |                                                                                                                                           |                                        | >                                      |
| roblems   WSML Cache View   WSML-Reasoner 🔍 D                                                                                                                | iscovery-View 🛛                                                                                                                           |                                        |                                        |
| Choose Goal                                                                                                                                                  |                                                                                                                                           |                                        |                                        |
| http://swing-project.org#Goal2Goal2                                                                                                                          | ▼ RULE ▼ Disc                                                                                                                             | over                                   |                                        |
| <ul> <li>Included Webservices</li> </ul>                                                                                                                     |                                                                                                                                           |                                        |                                        |
| 🗹 wps_discovery                                                                                                                                              |                                                                                                                                           |                                        |                                        |
| Result                                                                                                                                                       |                                                                                                                                           |                                        |                                        |
| Result     Web Service                                                                                                                                       | http://swing-project.org#Goal2Goal2 http://swing-project.org#UnionWPSUnionWPS                                                             | Type Of Match<br>Extended Plugin Match | Discovery Type<br>LightweightDiscovery |
|                                                                                                                                                              |                                                                                                                                           |                                        |                                        |
| <u>[\$]</u>                                                                                                                                                  | 101                                                                                                                                       |                                        | >                                      |
| <ul> <li>Additional Info</li> </ul>                                                                                                                          |                                                                                                                                           |                                        |                                        |

/Introduction

#### Overview



- Spatial Data Infrastructures
- Semantic Web Services
- Bridging the gap: Semantic Annotations
- SWING: use cases
- SWING: Developed Tools
- Demonstration (Videos)
- Hands-On Session



# **Semantic Annotations**

GEOWS 2009 February 1<sup>st</sup>, 2009 - Cancun, Mexico

#### **Looking Back**



- Web Services in Spatial Data Infrastructures
  - Lack sophisticated thematic descriptions
- Semantic Web & Ontologies
  - Provide means to capture data semantics
- Semantic annotations as approach to link the two worlds





#### **Overview**



- Explaining semantic annotations
- Ways to establish the connection
- Making use of the link
  - Creating the semantic annotations
  - Querying based on semantic annotations
- Semantic Annotations in OGC Standards

## ZICO



```
<element name="Zico region"</pre>
         type="con:Zico regionType"
         substitutionGroup="gml: Feature" />
<complexType name="Zico regionType">
  <complexContent>
    <extension base="gml:AbstractFeatureType">
      <sequence>
        <element name="msGeometry" type="gml:GeometryPropertyType"/>
        <element name="REGIONAL" type="string"/>
                                                               Resource Metadata
        <element name="NATIONAL" type="string"/>
        <element name="LIBELLE" type="string"/>
        <element name="TYPE" type="string"/>
        <element name="LA MESURE" type="string"/>
      </sequence>
    </extension>
  </complexContent>
</complexType>
```



### **Example of corresponding Ontology**









## Why the difference?

- Local vs. Global
  - Describing the local and linking to global
  - Searching the global and finding the local
- Data Models vs. Real world
  - Domain Ontologies capture real world semantics
  - Data Models represent application specific knowledge
  - Semantic Annotations keep it separated



**Resource Metadata Domain Reference** describes conceptualizes represents Resource Reality

**Domain Ontology** 

#### **Doesn't work**



```
<complexType name="Zico_regionType">
    <element name="REGIONAL" type="string" reference="dom:Identifier"/>
        <element name="LIBELLE" type="string" reference="dom:Identifier"/>
</complexType>
```

```
<complexType name="Zico_regionType">
    <element name="REGIONAL" type="string"
        reference="dom:GeographicalRegionName"/>
        <element name="LIBELLE" type="string"
        reference=="dom:ProtectedBirdRegionName"/>
    </complexType>
```

- Too generic  $\rightarrow$  loose benefits
- Too specific → cluttered domain vocabulary

#### **Rule-based annotations**







axiom defineZICO

definedBy

?feature[LIBELLE of Type ?attrLibelle] member Of ZicoFT and ?domBirdArea member Of dom#ImportantBirdArea and ?domIdentifier member Of dom#Identifier and dom#domainReference(?feature, ?domBirdArea) and dom#domainReference(?attrlibelle, ?domIdentifier) and dom#names(?attrlibelle, ?feature).





Goal PostCondition ?domBirdArea memberOf dom#ImportantBirdArea and ?domIdentifier memberOf dom#Identifier and dom#domainReference(?feature, ?domBirdArea) and dom#domainReference(?attrlibelle, ?domIdentifier) and dom#names(?attrlibelle, ?feature).

## **Visually-supported Annotations/Queries**







## **Open Issues: Standardization**

- Model References already standard (W3C SAWSDL)
- Support in OGC Standards required
  - Storing semantic annotation
  - Querying semantic annotations
  - End-user tools support
- Discussion Paper with different approaches prepared



#### **Open Issues: Processes**

- Model References already standard (W3C SAWSDL)
- Support in OGC Standards required
  - Storing semantic annotation
  - Querying semantic annotations
  - End-user tools support
- Discussion Paper with different approaches prepared
- How can we annotate Geoprocesses
  - Domain vocabulary of Geo-operations required? All?
  - Or just describing relation between input and output?

/Introduction

#### Overview



- Spatial Data Infrastructures
- Semantic Web Services
- Bridging the gap: Semantic Annotations
- SWING: use cases
- SWING: Developed Tools
- Demonstration (Videos)
- Hands-On Session



Semantic Web Services Interoperability in Geospatial decision making

# **Use Cases**

GEOWS 2009 February 1<sup>st</sup>, 2009 - Cancun, Mexico

## **SWING application theme**



- BRGM : Mineral resources Management
- Aggregate production and consumption
  - EU aggregate production & consumption is the largest macro-regional market in the world
  - Aggregates mineral resources with average low value
    - sand, gravel, crushed stone, ....
    - produced on-shore (quarries), off-shore, and some recycling (concrete)
  - EU production 3 billion tons
  - EU employment 250,000 jobs
  - EU value 35 billion €
  - consumption 5-15 tonnes per capita per year
  - about 25,000 production sites in Europe

## **SWING application theme**



#### Quarries and Aggregates

Aggregates = crushed hard rock (limestone, volcanic rock, sandstone, recycled concrete, ....), or on- & off-shore sediments (sand & gravel)

















## SWING



- Decision Making Support :
  - A new way of doing things in the Inspire Context
    - Reduce time to deliver
    - Brings interactivity
- Objectives in SWING
  - develop a geospatial decision-making application that can dynamically find and integrate interoperable semantic web services. (.... with the potential of being further developed and turned into a management and assessment system for natural resources)
  - evaluate the appropriateness of the technical framework



#### Given

- Inputs for a new infrastructure project
- Production/Consumption of actual quarries
- Known Land-uses constraints
- Geology
- Find places where to get aggregates
  - From existing quarries
  - By opening new ones (Land-use constraints + Geology)
#### **Use Cases**





(\*) All Quantity and Substances are given for example and are NOT real



- Use Case 1 : Production/Consomption Map
- Use Case 2 : Land-Use constraints integration
- Use Case 3 : Find the best place

### Use Case 1 - Create a simple map



- Thematic Objective: Create a consumption-production map of aggregates
- Technical challenges:
  - Set up needed DATA and Web Services (OGC and WSDL)
  - Build a WSML Domain Ontology
  - Annotate available WS with the Domain Ontology
  - Register WS in CAT and Store WS annotations
  - Setup simple WS composition, annotate and store into CAT, execute it with WSMX.

#### **Use Case 1 - Create a simple map**

**GEOWS.2009** 

#### © BRGM 2007







#### Use Case 2 - Create a complex map



- Thematic Objective: Create a map of land-use constraints and publish it as a decision making support document.
- Data Sources for Use Case 2

#### Technical challenges

- Implement WPS to combine multiple constraints
- Extend the Domain Ontology to take land-use constraints into account; Improve the Ontology engineering process
- Improve the annotation process (towards semi-automatic annotation)
- Improve technical architecture of the end-user interface

#### Use Case 2 - Create a complex map



#### **Use Case 2 - Create a complex map**







## Use Case 3 - Use created complex map to make sophisticated queries

| /          |              |  |  |  |  |
|------------|--------------|--|--|--|--|
| Substances | Quantity(*)  |  |  |  |  |
| Sand       | 110 000 tons |  |  |  |  |
| Granite    | 50 000 tons  |  |  |  |  |
| Concrete   | 200 000 tons |  |  |  |  |

Listing Quarry inside department Place for new Quarry (rank 1) Place for new Quarry (rank 2) Place for new Quarry (rank 3) Target place for new Airport

(\*) All Quantity and Substances are given for example and are NOT real

#### Use Case 3 – Integrate Multiple Criteria



- Thematic Objective: Create an interactive map of the ranking according to combined criteria
- Data Sources for UC3

#### • Technical challenges:

- Extended the domain ontology to catch domain experts knowledge
- Use geoprocessing facilities to compute spatial data needed for answering more sophisticated queries
- Improved the annotation process towards semi-automatic annotation
- Use of mediation for interoperability (service request parameters mediation)
- Improve technical architecture of the end-user interface

#### **Use Case 3 - Make sophisticated queries**







| MiMS v1.02   MyNewl | Project (D:\Travail\_MiM9                                                                                     | 5_projects\MyNewPro | ject.xml) * |        |         |  |
|---------------------|---------------------------------------------------------------------------------------------------------------|---------------------|-------------|--------|---------|--|
| File Actions Tools  |                                                                                                               |                     |             |        | Help    |  |
| ☆ 🗋 🖬 🛞             | 1 🖬 🔒 🖉 🧭                                                                                                     |                     |             |        |         |  |
| 💹 Project Resources | 🥞 Home Project                                                                                                |                     |             |        |         |  |
| C WMS               | Discover                                                                                                      | 🔥 Register          | 🛃 Annotate  | 🕢 Edit | Publish |  |
|                     | Function Description                                                                                          |                     |             |        |         |  |
|                     | Register allows you to add new resources in the catalogue, it adds the resource in your project resource too. |                     |             |        |         |  |

# Generating and Publishing the Website using MiMS (cont')



**GEOWS.2009** 



#### **Break**

/Introduction

#### Overview



- Spatial Data Infrastructures
- Semantic Web Services
- Bridging the gap: Semantic Annotations
- SWING: use cases

#### SWING: Developed Tools

- Demonstration (Videos)
- Hands-On Session

# **SWING Architecture Overview**

GEOWS 2009 February 1<sup>st</sup>, 2009 - Cancun, Mexico

#### Outline



#### Roles

Components and Interactions

#### **Roles – Decision Maker and Mineral Resource Specialist**



#### **Roles – Service Composer and Ontology Engineer**



GEOWS.2009

#### SWING Work Packages and Main Responsibilities







•MiMS (WP1): Environment for domain expert. Convenient semantic annotation & discovery; use composed services like standard OGC services

•WSMX (WP2): Semantic web services platform. Geospatial semantic discovery; execution of composed services (as ASMs)

•Concept Repository (WP3): Ontologies for semantic annotation. Used throughout components

•Visual OntoBridge (WP4): Annotation tool. Semi-automatic annotation of services and queries; provides user with most plausible annotations

•Catalogue (WP5): OGC Catalogue. Semantic discovery in interaction with WSMX; also provides adapter OGC  $\leftrightarrow$  WSMX ASM execution

•Composition Studio (WP6): Environment for IT expert. Convenient semantic annotation & discovery; graphically compose services; automatic export into WSMX ASMs

#### **High-level Architecture and Interactions**



**GEOWS.2009** 

/Introduction

#### Overview



- Spatial Data Infrastructures
- Semantic Web Services
- Bridging the gap: Semantic Annotations
- SWING: use cases
- SWING: Developed Tools
- Demonstration (Videos)
- Hands-On Session

#### **Hands-On Session**



- **Exercise**: Building a workflow with Composition Studio
- **Task**: Create a composition as described in the File CreatingWorkflowsSlides.pdf
- Exercise: Creating a decision-support map with MiMS: Extract MiMS.zip in folder c:\MiMS and start launcher.bat
- Tasks:
  - Try to follow the Steps in the mentioned Video
  - Create a "background" map (e.g. search for departments)
  - Find data about protected bird areas, quarries, mineral resources, ...
  - Create a legend and publish it as a website
  - Annotate an existing Web Feature Service about Birds